![](/_landing/img/webp/top-img2.webp)
на первый
заказ
Реферат на тему: Объём цилиндрического тела. Двойной интеграл. Вычисление двойных интегралов
Купить за 250 руб.Введение
При вычислении двойного интеграла элемент площади нам удобно представить в ином виде. Будем разбивать область интегрирования D в плоскости Oxy на частичные области посредством двух систем координатных линий: x=const, y=const. Этими линиями служат прямые, параллельные соответственно оси Оy и оси Оx, а частичными областями - прямоугольники со сторонами, параллельными осям координат. Ясно, что площадь каждой частичной области будет равна произведению соответствующих и . Поэтому элемент площади мы запишем в виде т.е. элемент площади в декартовых координатах является произведением дифференциалов независимых переменных. Мы имеемПри вычислении двойного интеграла (*) мы будем опираться на тот факт, что он выражает объём V цилиндрического тела с основанием D, ограниченного поверхностью . Напомним, что мы уже занимались задачей об объёме тела, когда рассматривали применения определённого интеграла к задачам геометрии и получили формулу
Рис.3
где S (х) - площадь поперечного сечения тела плоскостью, перпендикулярной к оси абсцисс, а и - уравнения плоскостей, ограничивающих тело. Применим теперь эту формулу к вычислению двойного интеграла
Предположим сначала, что область интегрирования D удовлетворяет следующему условию: любая прямая, параллельная оси Оx или Оy, пересекает границу области не более чем в двух точках. Соответствующее цилиндрическое тело изображено на рис.3
Область D заключим внутрь прямоугольника
стороны которого касаются границы области в точках А, В, С, Е. Интервал [а, b] является ортогональной проекцией области D на ось Ох, а интервал [с, d] - ортогональной проекцией области D на ось Оy. На рис.5 область D показана в плоскости Оху.
Точками А и С граница разбивается на две линии: ABС и AEC, каждая из которых пересекается с любой прямой, параллельной оси Оy, в одной точке. Поэтому, их уравнения можно записать в форме, разрешенной относительно y:
Аналогично точками В и Е граница разбивается на линии ВАЕ и ВСЕ, уравнения которых можно записать так:
Рис.5
Рассечем рассматриваемое цилиндрическое тело произвольной плоскостью, параллельной плоскости Oyz , т.е. x=const, (рис). В сечении мы получим криволинейную трапецию PMNR , площадь которой выражается интегралом от функции , рассматриваемой как функция одной переменной у, причем у изменяется от ординаты точки Р до ординаты точки R. Точка Р есть точка входа прямой х =const (в плоскости Оху) в область D , а R - точка ее выхода из этой области. Из уравнений линий АВС и АЕС следует, что ординаты этих точек при взятом х соответственно равны и .
Следовательно, интеграл
дает выражение для площади плоского сечения PMNR. Ясно, что величина этого интеграла зависит от выбранного значения х; другими словами, площадь рассматриваемого поперечного сечения является некоторой функцией от х, мы обозначим ее через S (х):
Согласно формуле (**) объем всего тела будет равен интегралу от S(x) в интервале изменения .( При выводе формулы (**) мы считали, что S(*) есть геометрическая площадь поперечного сечения. Поэтому дальнейшие рассуждения справедливы, строго говоря, лишь для случая . Основываясь на уточненном геометрическом смысле двойного интеграла, нетрудно доказать, на чем мы не будем останавливаться, что получающаяся формула для вычисления двойного интеграла будет верна для любых функций.
Заменяя в этой формуле S(x) её выражением, окончательно получим
или в более удобной форме
Пределы внутреннего интеграла переменные; они указывают границы изменения переменной интегрирования у при постоянном значении второго аргумента х. Пределы внешнего интеграла постоянны; они указывают границы, в которых может изменяться аргумент х.
Меняя роли х и у, т. е. рассматривая сечения тела плоскостями y=const , мы найдем сначала, что площадь Q(у) такого сечения равна , где у при интегрировании считается величиной постоянной. Интегрируя затем Q(у) в пределах изменения у, т. е. от с до d, мы придем ко второму выражению для двойного интеграла
(Б)
Здесь интегрирование совершается сначала по х, а потом по у.
.Формулы (А) и (Б) показывают, что вычисление двойного интеграла сводится к последовательному вычислению двух обыкновенных определенных интегралов; нужно только помнить, что во внутреннем интеграле одна из переменных принимается при интегрировании за постоянную. Для краткости правые части формул (А) и (Б) называют повторными (или двукратными) интегралами, а сам процесс расстановки пределов интегрирования - приведением двойного интеграла к повторному.
Формулы приведения двойного интеграла к повторному приобретают особенно простой вид, когда область D является прямоугольником со сторонами, параллельными осям координат (рис.6). В этом случае становятся постоянными пределы не только внешнего, но и внутреннего интегралов:
В других случаях для сведения двойного интеграла к повторному необходимо прежде всего построить область интегрирования; лучше всего изобразить эту область прямо в плоскости Оху, как это сделано на рис. Затем нужно установить порядок интегрирования, т. е. наметить, по какой переменной будет производиться внутреннее интегрирование, а по какой - внешнее, и расставить пределы интегрирования.
Поясним на примерах, как производится расстановка пределов интегрирования.
Оглавление
- Объём цилиндрического тела. Двойной интеграл- Вычисление двойных интегралов
- примеры
- Приложения двойных интегралов к задачам механики
- масса плоской пластинки переменной плотности
- статические моменты и центр тяжести пластинки
- моменты инерции пластинки
- Вычисление площадей и объёмов с помощью двойных интегралов
- Объём
- Вычисление площади плоской области
- Вычисление площади поверхности
- Примеры
- Объём цилиндрического тела. Двойной интеграл
- Цилиндрическим телом называется тело, ограниченное плоскостью Oxy, поверхностью, с которой любая прямая, параллельная оси Оz, пересекается не более чем в одной точке, и цилиндрической поверхностью, образующая которой параллельна оси Оz
- Область D, высекаемая в плоскости Oxy цилиндрической поверхностью, называется основанием цилиндрического тела см. рис.1. В частных случаях боковая цилиндрическая поверхность может и отсутствовать примером тому служит тело, ограниченное плоскостью Oxy и верхней полусферой
или зарегистрироваться
в сервисе
удобным
способом
вы получите ссылку
на скачивание
к нам за прошлый год