Внимание! Studlandia не продает дипломы, аттестаты и иные документы об образовании. Наши специалисты оказывают услуги консультирования и помощи в написании студенческих работ: в сборе информации, ее обработке, структурировании и оформления работы в соответствии с ГОСТом. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.
Нужна индивидуальная работа?
Подберем литературу
Поможем справиться с любым заданием
Подготовим презентацию и речь
Оформим готовую работу
Узнать стоимость своей работы
Дарим 200 руб.
на первый
заказ

Решение задач на тему: Многочлены Лежандра. Многочлены Чебышева. Преобразование Лапласа

Купить за 100 руб.
Страниц
12
Размер файла
174.35 КБ
Просмотров
38
Покупок
0
Математический анализ - раздел математики, дающий методы количественного исследования разных процессов изменения занимается изучением скорости изменения дифференциальное исчисление и определением длин

Введение

Математический анализ - раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела.

Начало математическому анализу положил в 1665 И.Ньютон и (около 1675) независимо от него Г.Лейбниц, хотя важную подготовительную работу провели И.Кеплер (1571-1630), Ф.Кавальери (1598-1647), П.Ферма (1601-1665), Дж.Валлис (1616-1703) и И.Барроу (1630-1677).

Операционное исчисление - раздел математики, занимающийся главным образом алгебраическими операциями, производимыми над символами операции (или преобразования).

Во многих задачах математического анализа рассматриваются ситуации, в которых каждая точка одного пространства ставится в соответствие некоторой точке другого (или того же) пространства. Пространства могут быть абстрактными, в которых "точки" в действительности являются функциями. Соответствие между двумя точками устанавливается с помощью преобразования или оператора. В задачу теории операторов входит подробное описание и классификация различных видов преобразований и их свойств, а также разработка символических методов, позволяющих минимизировать и упростить вычисления. Обычно теорию операторов применяют к пространствам, в которых допускается сложение или умножение точек, т.е. линейным пространствам, группам, кольцам, полям и т.д.

Операционное исчисление позволяет осуществить абстрактные постановки задач и обобщить такие разделы математического анализа, как теория дифференциальных и интегральных уравнений. Мощным стимулом для развития теории операторов стали современные проблемы квантовой теории. Наиболее полные результаты получены для дистрибутивных операторов в т.н. гильбертовом пространстве. Интерес к этой области во многом связан с представлением таких операторов интегральными преобразованиями.

В середине XIX века появился ряд сочинений, посвящённых так называемому символическому исчислению и применению его к решению некоторых типов линейных дифференциальных уравнений. Сущность символического исчисления состоит в том, что вводятся в рассмотрение и надлежащим образом интерпретируются функции оператора дифференцирования.

Среди сочинений по символическому исчислению следует отметить вышедшую в 1862 году в Киеве обстоятельную монографию русского математика М. Е. Ващенко-Захарченко "Символическое исчисление и приложение его к интегрированию линейных дифференциальных уравнений". В ней поставлены и разрешены основные задачи того метода, который в дальнейшем получил название операционного.

В 1892 году появились работы английского учёного О. Хевисайда, посвящённые применению метода символического исчисления к решению задач по теории распространения электрических колебаний в проводах.

В отличие от своих предшественников, Хевисайд определил обратный оператор однозначно, полагая и считая f(u) = 0 для u < 0. Труды Хевисайда положили начало систематическому применению символического, или операционного, исчисления к решению физических и технических задач.

Однако широко развитое в трудах Хевисайда операционное исчисление не получило математического обоснования, и многие его результаты оставались недоказанными. Строгое обоснование было дано значительно позже, когда была установлена связь между функциональным преобразованием Лапласа и оператором дифференцирования

если существует производная , для которой

существует и f(0) = 0, то

Одним из наиболее мощных средств решения дифференциальных уравнений, как обыкновенных, так, особенно, в частных производных, является метод интегральных преобразований. Преобразования Фурье, Лапласа, Ганкеля и другие применяются для решения задач теории упругости, теплопроводности, электродинамики и других разделов математической физики. Использование интегральных преобразований позволяет свести дифференциальное, интегральное или интегро-дифференциальное уравнение к алгебраическому, а также, в случае дифференциального уравнения в частных производных, уменьшить размерность.

Интегральные преобразования задаются формулой

где функции называются оригиналом и изображением соответственно, и являются элементами некоторого функционального пространства , при этом функция называется ядром интегрального преобразования.

Большинство интегральных преобразований являются обратимыми, то есть по известному изображению можно восстановить оригинал, зачастую также интегральным преобразованием:

Хотя свойства интегральных преобразований достаточно обширны, у них довольно много общего.

преобразование смещенный многочлен исчисление

Оглавление

- Введение

- Многочлены Лежандра

- Многочлены Чебышева

- Преобразование Лапласа

- Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке

- Постановка задачи

- Обращение преобразования Лапласа с помощью смещенных многочленов Лежандра

- Обращение преобразования Лапласа с помощью смещенных многочленов Чебышева первого рода

- Заключение

- преобразование смещенный многочлен исчисление

Заключение

Одним из наиболее мощных средств решения дифференциальных уравнений, как обыкновенных, так, особенно, в частных производных, является метод интегральных преобразований.

Преобразования Фурье, Лапласа, Ганкеля и другие применяются для решения задач теории упругости, теплопроводности, электродинамики и других разделов математической физики.

Преобразование Лапласа - интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.

Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями.

Интеграл Лапласа имеет вид:

где интегрирование производится по некоторому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f(z), определенной на L, аналитическую функцию F(р) комплексного переменного р=s+it.

Численное преобразование Лапласа - численное выполнение преобразования

переводящего оригинал f(t), 0<t<∞ в изображение F(р),, а также численное обращение преобразования Лапласа.

Необходимость применения численного преобразования Лапласа возникает вследствие того, что таблицы оригиналов и изображений охватывают далеко не все встречающиеся в практике случаи, а также вследствие того, что оригинал или изображение зачастую выражаются слишком сложными, неудобными для применений формулами.

Задачу численного обращения преобразования Лапласа можно также решать методами, основанными на разложении функции-оригинала в функциональный ряд. Сюда в первую очередь можно отнести разложение в степенной ряд, в обобщенный степенной ряд, в ряд по показательным функциям, а также в ряды по ортогональным функциям, в частности по многочленам Чебышева, Лежандра, Якоби и Лагерра. Задача разложения оригинала в ряды по многочленам Чебышева, Лежандра, Якоби в окончательном своем виде сводится к проблеме моментов на конечном промежутке. Пусть известно преобразование Лапласа F(р) функции β(t)f(t):

где f(t) - искомая функция, а β(t) - неотрицательная, интегрируемая на [0,∞) функция.

СПИСОК ЛИТЕРАТУРЫ

1. Ван дер Поль Б., Бремер Х. Операционное исчисление на основе двустороннего преобразования Лапласа. - М.: Издательство иностранной литературы, 1952. - 507 с.

2. Диткин В.А., Прудников А. П. Интегральные преобразования и операционное исчисление. - М.: Главная редакция физико-математической литературы издательства "Наука", 1974. - 544 с.

3. Кожевников Н.И., Краснощекова Т. И., Шишкин Н. Е. Ряды и интегралы Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа. - М.: Наука, 1964. - 184 с.

4. Крылов В.И., Скобля Н.С. Методы приближенного преобразования Фурье и обращения преобразования Лапласа. - М.: Наука, 1974. - 226 с.

Размещено на Allbest.ru

Как купить готовую работу?
Авторизоваться
или зарегистрироваться
в сервисе
Оплатить работу
удобным
способом
После оплаты
вы получите ссылку
на скачивание
Страниц
12
Размер файла
174.35 КБ
Просмотров
440
Покупок
0
Многочлены Лежандра. Многочлены Чебышева. Преобразование Лапласа
Купить за 100 руб.
Похожие работы
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
Прочие работы по предмету
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
103 972 студента обратились
к нам за прошлый год
2001 оценок
среднее 4.2 из 5
Игорь Отличная работа, рекомендую автора!
Александр Работа выполнена в срок, учтены все пожелания. Большое спасибо!
Александр Работа выполнена в срок. Спасибо большое за выполненную работу!
Александр Заказ выполнен раньше срока. Рекомендую исполнителя.
Иван По программе в учебном заведении резко перенесли сдачи курсовых и дали неделю с половиной на сдачу и распечатку ,...
Александр Курсовую засчитали на отлично. Работа выполнена грамотно, логично, материал хорошо структурирован, правки внесены...
Александр Работа была выполнена быстро и чётко. Результат стоит своих денег.
Александр Работа выполнена хорошо, буду обращаться вновь!
Александр Всë отлично, буду заказывать снова
Антон Большое спасибо за работу! Всё хорошо курсовой остался доволен