Внимание! Studlandia не продает дипломы, аттестаты и иные документы об образовании. Наши специалисты оказывают услуги консультирования в области образования: в сборе информации, ее обработке, структурировании и оформления в соответствии с ГОСТом. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.
Нужна индивидуальная работа?
Подберем литературу
Поможем справиться с любым заданием
Подготовим презентацию и речь
Оформим готовую работу
Узнать стоимость своей работы
Дарим 200 руб.
на первый
заказ

Дипломная работа на тему: История развития систем счисления. Двоичные системы счисления

Купить за 600 руб.
Страниц
25
Размер файла
147.48 КБ
Просмотров
36
Покупок
0
Счисление, нумерация, - это совокупность приемов представления туральных чисел. В любой системе счисления некоторые символы слова или знаки служат для обозначения определенных чисел, зываемых

Введение

Системой счисления называется совокупность приемов и правил для наименования и обозначения чисел. Условные знаки, применяемые для обозначения чисел, называются цифрами.

Обычно все системы счисления разбивают на два класса: непозиционные и позиционные. Непозиционной называют систему счисления, в которой значение каждой цифры в любом месте последовательности цифр, означающей запись числа, не изменяется.

Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах либо очень громоздка, либо алфавит системы чрезвычайно велик. Примером непозиционной системы счисления, достаточно широко применяющейся в настоящее время, может служить так называемая римская нумерация.

Для определения значения числа недостаточно знания типа и алфавита системы счисления. для этого необходимо еще задание правила, позволяющего по значению цифр установить значение числа. Например, для определения значения числа 945 в обычной десятичной системе счисления применяется функция десятичного сложения, т. е. значение числа определяется по значению цифр (9 в крайней левой позиции, 5 в крайней правой позиции, 4 между ними) обычным суммированием: значение числа 945 есть 900+40+5. В римской нумерации число IX определяется вычитанием: значение числа IX есть 10-1=9.

Системы, в которых значение каждой цифры зависит и от места в последовательности цифр при записи числа, носят название позиционных. Позиционной системой счисления является обычная десятичная система счисления.

При выполнении различных операций в современных цифровых системах числа обычно представляются в двоичной системе счисления, основанием которой является число 2. При этом целое к-разрядное десятичное число записывается в виде n-разрядного двоичного числа :

где =0, 1, … , 9 - цифра в i-м разряде десятичного числа:

=0 или 1 - цифра в j-м разряде двоичного числа.

Введением отрицательных степеней числа 2 представляются дробные числа.

Таким образом, в двоичном счислении любое числи можно представить двумя числами: 0 и 1. Для представления этих чисел в цифровых системах достаточно иметь электронные схемы, которые могут принимать два состояния, четко различающиеся значением какой-либо электрической величины - потенциала или тока. Одному из значений этой величины соответствует цифра 0, другому 1. Относительная простота создания электронных схем с двумя электрическими состояниями и привела к тому, что двоичное представление чисел доминирует в современной цифровой технике. При этом 0 обычно представляется низким уровнем потенциала, а 1 - высоким уровнем. Такой способ представления называется положительной логикой.

Перевод десятичного числа в двоичный код можно осуществлять путем последовательного деления числа на 2. Остатки ( 0 или 1 ), получающиеся на каждом шаге деления, формируют двоичный код преобразуемого числа, начиная с его младшего разряда. В качестве старшего разряда двоичного кода записывается 1, полученная в результате последнего шага деления. Например, преобразование числа =109 в двоичный код выполняется следующим образом:

: остатки 109 2

Обратное преобразование выполняется следующим образом:

Цифровые системы оперируют действительными, целыми и дробными числами, которые могут иметь две формы представления: с плавающей запятой, с фиксированной запятой.

При использовании плавающей запятой число состоит из двух частей: мантиссы m, содержащей значащие цифры числа, и порядка р, показывающего степень, в которую надо возвести основание числа q, чтобы полученное при этом число, умноженное на мантиссу , давало истинное значение представляемого числа:

Мантисса и порядок представляются в двоичном коде. Обычно число дается в нормализованном виде, когда его мантисса является правильной дробью, причем первая значащая цифра ( единица ) следует непосредственно после запятой: например, где m=0,1010; р=10; q=2

При использовании фиксированной запятой число представляется в виде единого целого, причем положение запятой в используемой разрядной сетке жестко фиксировано. Обычно числа с фиксированной запятой даются в виде правильной дроби. Для этого все числа умножают на масштабный коэффициент, чтобы перевести их в правильную дробь. Цифровые системы, использующие числа с плавающей запятой, сложнее систем, использующих числа с фиксированной запятой, так как при этом требуется выполнение операций как над мантиссами, так и над порядками. Однако диапазон представляемых чисел при одинаковом числе разрядов в системах с плавающей запятой значительно больше.

Для представления знака числа используется знаковый разряд z, который обычно располагается перед числовыми разрядами. Для положительных чисел значение знакового разряда z=0, для отрицательных чисел z=1. Для чисел с плавающей запятой вводятся отдельные знаковые разряды для мантиссы и для порядка чисел.

Для представления числе со знаком в цифровых системах используется обратный1 или дополнительный2 код (таб. 1.). При этом положительные числа представляются в обычном двоичном коде. Обратный код отрицательного числа образуется путем замены 0 во всех разрядах исходного двоичного числа на 1, и наоборот. Дополнительный код отрицательного числа получается из обратного прибавлением 1 к младшему разряду.

Особенность кода Грея в том , что при переходе к каждому последующему числу в коде изменяется значение только одного двоичного разряда. При этом двухразрядные числа образуют циклическую последовательность 00-01-11-10 (0-1-2-3), трехразрядные - последовательность 000-001-011-010-110-111-101-100-000 (0-1-2-3-4-5-6-7-0) и т.д. Такая цикличность кода является весьма удобной, например, для кодирования угловых перемещений в преобразователях угла поворота в цифровой код.

Таблица 1. Наиболее распространенные двоичные коды от 0 до 15

Десятичное число

Форма представления

Двоичное счисление

Обратный код

Дополнительный код

Код Грея

Перевод десятичных чисел в двоичный код требует использования достаточно сложных схем преобразователей и занимает относительно долгое время. Более просто и быстро осуществляется перевод десятичных чисел в двоично-десятичный код. При этом цифра в каждом разряде десятичного числа заменяется соответствующим четырехразрядным двоичным числом (тетрадой) согласно таб. 2

Таблица 2.

Наиболее распространенные двоично-десятичные коды чисел от 0 до 9

Десятичное число

Двоично-десятичный код (8-4-2-1)

Код Айкена (2-4-2-1)

Код "с избытком 3"

Например, число в двоично-десятичном коде записывается в виде 0111 0010 1001. Для выполнения сложения и вычитания двоично-десятичных чисел наиболее удобно использовать самодополняющиеся коды, к числу которых относятся код Айкена, код "с избытком 3 ".Код Айкена отличается от обычного двоично-десятичного, имеющего весовые коэффициенты разрядов в тетрадах 8-4-2-1, другими значениями весовых коэффициентов разрядов: 2-4-2-1. Код "с избытком 3"получается из обычного двоично-десятичного арифметическим прибавлением числа 3 (двоичное число 0011).

Как видно из таблицы 2 обратный код числа, представленного в каком-либо самодополняющем двоично-десятичном коде ,является его двоичным дополнением до 9. Например, число 5 в коде "с избытком 3" =1000 имеет обратный код =0111, соответствующий числу 4 в коде "с избытком 3", которое "дополняет" число 5 до 9, так как 5+4=9.

Оглавление

- История развития систем счисления

- Двоичные системы счисления

- Двоичная арифметика

- Формы представления чисел с фиксированной и плавающей запятой

- Сложение чисел с фиксированной запятой

- Сложение чисел с плавающей запятой

- Умножение чисел с фиксированной запятой

- Умножение чисел с плавающей запятой

- Прямой, обратный и дополнительный коды. Модифицированный код

- История развития систем счисления

Как купить готовую работу?
Авторизоваться
или зарегистрироваться
в сервисе
Оплатить работу
удобным
способом
После оплаты
вы получите ссылку
на скачивание
Страниц
25
Размер файла
147.48 КБ
Просмотров
147
Покупок
0
История развития систем счисления. Двоичные системы счисления
Купить за 600 руб.
Похожие работы
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
Прочие работы по предмету
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
103 972 студента обратились
к нам за прошлый год
2042 оценок
среднее 4.9 из 5
Сергей Благодарю за оперативное выполнение
Сергей Спасибо за работу! Очень грамотный специалист
Сергей Спасибо за качественную работу!
Сергей Спасибо за выполнение в срок! Буду сотрудничать с Вами)
Сергей Как всегда отличная работа! Спасибо
Александр Быстро, четко, всё соответствует требованиям) Спасибо)
Сергей Благодарю за помощь)
Сергей Спасибо большое! Все отлично
Александр Отличный автор, статья соответствует критериям заказа, спасибо за работу!
Сергей Благодарю на оперативную работу! Автор всегда на связи