на первый
заказ
Дипломная работа на тему: Случайные величины. Функция распределения вероятностей. Основные свойства функции распределения
Купить за 600 руб.Введение
Выше рассматривались эксперименты, результаты которых являются случайными событиями. Однако часто возникает необходимость количественного представления результатов эксперимента в виде некоторой величины , которая называется случайной величиной. Случайная величина является вторым (после случайного события) основным объектом изучения теории вероятностей и обеспечивает более общий способ описания опыта со случайным исходом, чем совокупность случайных событий.Рассматривая эксперименты со случайным исходом, мы уже имели дело со случайными величинами. Так, число успехов в серии из испытаний - пример случайной величины. Другими примерами случайных величин являются: число вызовов на телефонной станции за единицу времени; время ожидания очередного вызова; число частиц с заданной энергией в системах частиц, рассматриваемых в статистической физике; средняя суточная температура в данной местности и т.д.
Случайная величина характерна тем, что невозможно точно предсказать ее значение, которое она примет, но с другой стороны, множество ее возможных значений обычно известно. Так для числа успехов в последовательности из испытаний это множество конечно, поскольку число успехов может принимать значения . Множество значений случайной величины, может совпадать с вещественной полуосью , как в случае времени ожидания и т.д.
Рассмотрим примеры экспериментов со случайным исходом, для описания которых обычно применяются случайные события и введем эквивалентное описание с помощью задания случайной величины.
1). Пусть результатом опыта может быть событие или событие . Тогда этому эксперименту можно поставить в соответствие случайную величину , которая принимает два значения, например, и с вероятностями и , причем имеют место равенства: и . Таким образом, опыт характеризуется двумя исходами ис вероятностями и , или этот же опыт характеризуется случайной величиной , принимающей два значения и с вероятностями и .
2). Рассмотрим опыт с бросанием игральной кости. Здесь исходом опыта может быть одно из событий , где - выпадение грани с номером . Вероятности , . Введем эквивалентное описание этого опыта с помощью случайной величины , которая может принимать значения с вероятностями , .
3). Последовательность независимых испытаний характеризуется полной группой несовместных событий , где - событие, состоящее в появлении успехов в серии из опытов; причем вероятность события определяется формулой Бернули, т.е. . Здесь можно ввести случайную величину - число успехов, которая принимает значения с вероятностями . Таким образом, последовательность независимых испытаний характеризуется случайными событиями с их вероятностями или случайной величиной с вероятностями того, что принимает значения : , .
4). Однако, не для всякого опыта со случайным исходом существует столь простое соответствие между случайной величиной и совокупностью случайных событий. К примеру, рассмотрим эксперимент, в котором точка наугад бросается на отрезок . Здесь естественно ввести случайную величину - координату на отрезке , в которую попадает точка. Таким образом, можно говорить о случайном событии , где - число из . Однако вероятность этого события . Можно поступить иначе - отрезок разбить на конечное число непересекающихся отрезков и рассматривать случайные события, состоящие в том, что случайная величина принимает значения из интервала . Тогда вероятности - конечные величины. Однако и этот способ имеет существенный недостаток, поскольку отрезки выбираются произвольным образом. Для того, чтобы устранить этот недостаток рассматривают отрезки вида , где переменная . Тогда соответствующая вероятность
является функцией аргумента . Это усложняет математическое описание случайной величины, но при этом описание (29.1) становится единственным, устраняется неоднозначность выбора отрезков .
Для каждого из рассмотренных примеров несложно определить вероятностное пространство , где - пространство элементарных событий, - - алгебра событий (подмножеств ), - вероятность, определенная для любого . Например, в последнем примере , - - алгебра всех отрезков , содержащихся в .
Рассмотренные примеры приводят к следующему определению случайной величины.
Пусть - вероятностное пространство. Случайной величиной называется однозначная действительная функция , определенная на , для которой множество элементарных событий вида является событием (т.е. принадлежат ) для каждого действительного числа .
Таким образом, в определении требуется, чтобы для каждого вещественного множество , и это условие гарантирует, что для каждого определена вероятность события . Это событие принято обозначать более краткой записью .
Оглавление
- Случайные величины- Функция распределения вероятностей
- Основные свойства функции распределения вероятностей
- Функция распределения вероятностей дискретной случайной величины
- Плотность распределения вероятностей
- Плотность распределения вероятностей дискретной случайной величины
- Примеры плотностей и функций распределения вероятностей
- Сингулярные случайные величины
- Математическое ожидание случайной величины
- Примеры вычисления математического ожидания случайной величины
- Свойства математического ожидания
- Дисперсия случайной величины
- Моменты случайной величины
- Неравенство Чебышева
- Коэффициент асимметрии
- Коэффициент эксцесса
- Среднеквадратическая ошибка
- Характеристическая функция
- Основные свойства характеристической функции
- Примеры вычисления характеристической функции
- Моменты, кумулянты и характеристическая функция
или зарегистрироваться
в сервисе
удобным
способом
вы получите ссылку
на скачивание
к нам за прошлый год