на первый
заказ
Реферат на тему: Механика Ньютона – основа классического описания природы
Купить за 250 руб.Введение
Понятие "физика" уходит своими корнями в глубокое прошлое, в переводе с греческого оно означает "природа". Основной задачей этой науки является установление "законов" окружающего мира. Одно из основных сочинений Платона, ученика Аристотеля, называлось "Физика".Наука тех лет имела натурфилософский характер, т.е. исходила из того, что непосредственно наблюдаемые перемещения небесных светил есть их действительные перемещения. Отсюда был сделан вывод о центральном положении Земли во Вселенной. Эта система верно отражала некоторые особенности Земли как небесного тела: то, что Земля - шар, что все тяготеет к ее центру. Таким образом, это учение было собственно о Земле. На уровне своего времени оно отвечало основным требованиям, которые предъявлялись к научному знанию. Во-первых, оно с единой точки зрения объясняло наблюдаемые перемещения небесных тел и, во-вторых, давало возможность вычислять их будущие положения. В то же время теоретические построения древних греков носили чисто умозрительный характер - они были совершенно оторваны от эксперимента.
Такая система просуществовала вплоть до XVI столетия, до появления учения Коперника, получившее свое дальнейшее обоснование в экспериментальной физике Галилея, завершившееся созданием ньютоновской механики, объединившей едиными законами движения перемещение небесных тел и земных объектов. Оно явилось величайшей революцией в естествознании, положившей начало развитию науки в ее современном понимании.
Галилео Галилей считал, что мир бесконечен, а материя вечна. Во всех процессах ничто не уничтожается и не порождается - происходит лишь изменение взаимного расположения тел или их частей. Материя состоит из абсолютно неделимых атомов, ее движение - единственное, универсальное механическое перемещение. Небесные светила подобны Земле и подчиняются единым законам механики.
Для Ньютона было важно однозначно выяснить с помощью экспериментов и наблюдений свойства изучаемого объекта и строить теорию на основе индукции без использования гипотез. Он исходил из того, что в физике как экспериментальной науке нет места для гипотез. Признавая не безупречность индуктивного метода, он считал его среди прочих наиболее предпочтительным.
И в эпоху античности, и в XVII веке признавалась важность изучения движения небесных светил. Но если для древних греков данная проблема имела больше философское значение, то для XVII века, преобладающим был аспект практический. Развитие мореплавания обусловливало необходимость выработки более точных астрономических таблиц для целей навигации по сравнению с теми, которые требовались для астрологических целей. Основной задачей было определение долготы, столь нужной астрономам и мореплавателям. Для решения этой важной практической проблемы и создавались первые государственные обсерватории (в 1672 г. Парижская, в 1675 г. Гринвичская). По сути своей это была задача определения абсолютного времени, дававшего при сравнении с местным временем интервал времени, который и можно было перевести в долготу. Определить это время можно было с помощью наблюдения движений Луны среди звезд, а также с помощью точных часов, поставленных по абсолютному времени и находящихся у наблюдателя. Для первого случая были необходимы очень точные таблицы для предсказания положения небесных светил, а для второго - абсолютно точные и надежные часовые механизмы. Работы в этих направлениях не были успешными. Найти решение удалось лишь Ньютону, который, благодаря открытию закона всемирного тяготения и трех основных законов механики, а также дифференциального и интегрального исчисления, предал механике характер цельной научной теории.
Оглавление
- 1. Введение. 3- Механика Ньютона
- Законы движения Ньютона
- Первый закон Ньютона
- Второй закон Ньютона
- Третий закон Ньютона
- Закон всемирного тяготения
- Основная задача механики
- Границы применимости
- 3. Заключение. 18
- 4. Список литературы. 20
Заключение
Вклад, сделанный Ньютоном в развитие естествознания, заключался в том, что он дал математический метод обращения физических законов в количественно измеримые результаты, которые можно было подтвердить наблюдениями, и, наоборот, выводить физические законы на основе таких наблюдений. Как он сам писал в предисловии к "Началам", "... сочинение это нами предлагается как математические основания физики. Вся трудность физики... состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления... Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами, с которыми частицы тел вследствие причин, пока неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга. Так как эти силы неизвестны, до сих пор попытки философов объяснить явления природы и оставались бесплодными. Я надеюсь, однако, что или этому способу рассуждения, или другому, более правильному, изложенные здесь основания доставят некоторое освещение".2Ньютоновский метод стал главным инструментом познания природы. Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, опираясь на измерительную технику, обеспечивал небывалую ранее точность. Физическое знание все в большей мере становилось основой промышленной технологии и техники, стимулировало развитие других естественных наук. В физике изолированные ранее свет, электричество, магнетизм и теплота оказались объединенными в электромагнитную теорию. И хотя природа тяготения оставалась не выясненной, его действия можно было рассчитать. Утвердилась концепция механистического детерминизма Лапласа, исходившая из возможности однозначно определить поведение системы в любой момент времени, если известные исходные условия. Структура механики как науки казалась прочной, надежной и почти полностью завершенной - т.е. не укладывающиеся в существующие классические каноны феномены, с которыми приходилось сталкиваться, казались вполне объяснимыми в будущем более изощренными умами с позиций классической механики. Складывалось впечатление, что знание физики близко к своему полному завершению - столь мощную силу демонстрировал фундамент классической физики.
Список литературы
1. Карпенков С.Х. Основные концепции естествознания. М.: ЮНИТИ, 1998.2. Ньютон и философские проблемы физики XX века. Коллектив авторов под ред. М.Д. Ахундова, С.В. Илларионова. М.: Наука, 1991.
3. Гурский И.П. Элементарная физика. М.: Наука, 1984.
4. Большая Советская Энциклопедия в 30 томах. Под ред. ПрохороваА.М., 3 издание, М., Советская энциклопедия, 1970.
5. ДорфманЯ.Г. Всемирная история физики с начала XIX до середины XX вв. М., 1979.
или зарегистрироваться
в сервисе
удобным
способом
вы получите ссылку
на скачивание
к нам за прошлый год