Внимание! Studlandia не продает дипломы, аттестаты и иные документы об образовании. Наши специалисты оказывают услуги консультирования и помощи в написании студенческих работ: в сборе информации, ее обработке, структурировании и оформления работы в соответствии с ГОСТом. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.
Нужна индивидуальная работа?
Подберем литературу
Поможем справиться с любым заданием
Подготовим презентацию и речь
Оформим готовую работу
Узнать стоимость своей работы
Дарим 200 руб.
на первый
заказ

Дипломная работа на тему: Устройства функциональной электроники

Купить за 600 руб.
Страниц
31
Размер файла
2.9 МБ
Просмотров
14
Покупок
0
Пленки металлов, диэлектриков и полупроводников, осажденные различные поверхности, используют в электронной аппаратуре как функциональные элементы резисторов, конденсаторов, транзисторов, ИМС, ПП, а

Введение

Из уравнений (3.6) и (3.23) следует, что размеры критического зародыша rкр, его свободная энергия (энергетический барьер) ДGкр и скорость образования зародыша х3 зависят от значений поверхностной энергии, контактного угла, температуры, степени перенасыщения (скорости конденсации), энергии активации поверхностной диффузии. Эти характеристики могут рассматриваться как технологические параметры ТП и исходных материалов, поэтому проанализируем их влияние на стадии образования зародышей и формирования первых (моноатомных) слоев.

Пленка, образованная при высоком энергетическом барьере, должна состоять из зародышей, имеющих большой критический радиус и низкую скорость зарождения (малое число зародышей), т. е. состоять из нескольких крупных агрегатов. Пленка, образованная при низком энергетическом барьере, должна состоять из зародышей, имеющих малый критический радиус и высокую скорость зарождения (большое число зародышей), т. е. состоять из большого числа мелких агрегатов. Такая пленка становится сплошной при относительно малом значении средней толщины, поскольку зародыши уже на ранних стадиях осаждения соприкасаются и срастаются. Кроме того, структура такой пленки более мелкодисперсная, чем у пленки с большим rкр и малым х3. Это, в свою очередь, будет сказываться на электрических свойствах полученных слоев. Таким образом, анализ влияния технологических параметров на rкр, ДGкр, х3 может в первом приближении дать ответ на характер их взаимной зависимости и связь с электронными свойствами полученных слоев.

Сопоставление приведенных данных указывает на существенную зависимость rкр от природы осаждаемого материала и особенно от такого его свойства, как давление насыщенного пара, связанного с теплотой испарения. Поскольку теплота испарения прямо пропорциональна точке кипения (согласно правилу Трутона), можно заключить, что материалы с высокой температурой кипения обладают большим значением ДGV. Следовательно, размеры критических зародышей должны уменьшаться с повышением температуры кипения вещества пленки. Поэтому у металлов с высокой температурой кипения (W, Мо, Rе, Та, Ni, Сr и др.) даже очень малые зародыши являются стабильными. У металлов с невысокой температурой кипения (Zn, Сd, Аg, Аu, Сu и др.) зародыши должны достичь значительной величины, прежде чем стать стабильными. С увеличением размеров их устойчивость повышается.

При срастании агрегатов между ними формируются границы зерен. Таким образом, размер зерен образующейся пленки определяется величиной критических и (сверхкритических) зародышей. В свою очередь, как подчеркивалось ранее, структура пленки влияет на ее электрофизические свойства. Окончательные размеры зерен зависят и от режимов последующей обработки пленки, например ее отжига при определенных температуре, времени, давлении и т. п. Исследования тонких пленок показали, что материалы пластины и испаряемого вещества, а также условия осаждения влияют на структуру пленок.

Из приведенных соотношений следует, что размеры критических зародышей резко снижаются, если материал пластины имеет большое сродство с осаждаемым веществом, т. е. малый угол ц. Например, если в качестве материала пластины служит металл, для которого уS = 1,5 Дж/м2, ц→0, то при осаждении алюминия rкр может иметь значение, близкое к нулю, что указывает на отсутствие энергетического барьера при зарождении пленки даже у металлов с высоким давлением насыщенного пара. Поэтому образование сплошных пленок может происходить при нанесении на металлическую или полупроводниковую пластину даже нескольких моноатомных слоев осаждаемого металла. Такое явление часто используется в технологии РЭА для создания адгезионных подслоев при получении пленок из материалов, имеющих малое сродство с пластиной (плохую адгезию к пластине). При этом сначала на пластину напыляют какой-либо материал с малым рк и хорошей адгезией к пластине (ц→0), например Сr или W, затем на него - основной металл (А1, Сu, Аu и т. п.), который будет осуществлять ту или иную заданную электрическую функцию.

Влияние температуры пластины на размеры критического зародыша определяется зависимостью, полученной в результате дифференцирования выражения (3.6) по температуре:

Согласно средним значениям величин, входящих в (3.24) для металлов, уS= 1 Дж/м2, ∂ДGv/∂Т≈ДSисп≈8,8*106 Дж/(м3*К); дуS /дТ≈5*10-4 Дж/(м2*К) при | ДGv | <1,64*1010 Дж/м3 получим

что имеет место практически во всех случаях, когда существует энергетический барьер образования зародышей.

Следовательно, увеличение температуры пластины ведет к росту rкр и сохранению островковой структуры и для более высоких значений средней толщины пленки. На рис. 3.6 приведена зависимость среднего расстояния d между агрегатами (плотности агрегатов) от температуры пластины при термическом испарении и катодном распылении. Угол наклона кривых 1 и 2 позволяет определить ДGп.д.

Продифференцировав ДGкр по температуре, найдем

Поскольку скорость образования зародышей х3 экспоненциально связана с ДGкр [см. уравнение (3.23)], скорость возникновения агрегатов критических и сверхкритических размеров быстро убывает с ростом температуры. В этом случае для создания сплошной пленки потребуется более продолжительное время.

Влияние скорости осаждения пленки (степени перенасыщения) на размеры критических зародышей (rкр) и ДGкр обусловлено зависимостью этой скорости от значения ДGv [см. (3.3) и (3.4)]. При увеличении N↓ или рпер (ри-рк) возрастает ДGv. Поскольку поверхностные энергии пластины и границы раздела не зависят от N↓,

Следовательно, рост скорости осаждения пленки приводит к уменьшению размеров зародышей и увеличению скорости их возникновения. Поскольку зависимость ДGv = f (N↓) является логарифмической, влияние скорости осаждения пленки на значения rкр и ДGкр сказывается очень сильно.

Повышение скорости осаждения при реальных условиях может привести и к увеличению размеров критических зародышей, т. е. зависимость rкр = f(N↓) является более сложной, чем описываемая теорией Гиббса - Фольмера.

Влияние поверхностной диффузии на размеры критического зародыша аналитически определить нельзя. Однако скорость образования критических зародышей должна зависеть от способности адсорбированных атомов диффундировать и сталкиваться друг с другом. Согласно уравнению (3.23) эта скорость уменьшается экспоненциально с увеличением энергии активации поверхностной диффузии. Если энергия активации велика, то диффузия протекает медленно и зародыши растут только за счет столкновения их с атомами паровой фазы. Энергию активации диффузии часто принимают равной 1/4 энергии активации десорбции в газовую фазу, т. е.

Энергия связи осаждаемых атомов с пластиной ДGадс, как показано ранее, влияет на значения rкр и ДGкр. Поэтому для неоднородных поверхностей пластин, где ДGадс заметно изменяется от участка к участку, на различных участках пластины значения rкр и ДGкр различны, что сказывается на однородности осаждаемой пленки. Вот почему в технологии РЭА необходимо иметь подложки с однородной и чистой поверхностью.

Энергия адсорбции для некоторых металлов имеет следующие значения:

Оглавление

- Физико-химические основы зарождения и роста новой фазы 1. Анализ гомогенного и гетерогенного зарождения новой фазы

- Влияние технологических факторов зарождения новой фазы на структуру пленок

- Рост пленок. Эпитаксия

- Химический рост эпитаксиальных пленок Глава 2. Физико-химические основы поверхностных процессов

- Термодинамика поверхностных процессов

- Адсорбционные процессы на поверхности твердых тел

- Факторы, влияющие на адгезию

- Процессы очистки, промывки и пропитки поверхности

- Электрофизические характеристики соприкасающихся поверхностей и границ раздела слоев

- Физико-химические основы зарождения и роста новой фазы

- Анализ гомогенного и гетерогенного зарождения новой фазы

- Пленки металлов, диэлектриков и полупроводников, осажденные на различные поверхности, используют в электронной аппаратуре как функциональные элементы резисторов, конденсаторов, транзисторов, ИМС, ПП, а также различных приборов на акустических поверхностных волнах и магнитных доменах, с зарядовой связью и др. Кроме того, пленки применяют при изготовлении покрытий, обеспечивающих высокие потребительские эстетические качества РЭА

- Механизм процессов зарождения и роста пленок во многом определяет их кристаллическую структуру, а следовательно, и электрофизические, физико-химические, механические и эстетические свойства. Поскольку большинство ТП производства РЭА связано с осаждением или растворением пленок, необходимо рассмотреть физико-химические основы процессов зарождения и роста пленок новой фазы

- Пленки как элементы РЭА создаются на поверхности подложек при взаимодействии этих поверхностей с потоком частиц осаждаемых веществ. Результатом такого взаимодействия является появление новой фазы на поверхности подложки пластины, детали, платы

- Потоки частиц могут иметь различный характер молекулярные или ионные направленные пучки, потоки газовой и жидкой сред, движущиеся по законам газо- и гидродинамики, а также диффузионные потоки частиц. Процессы зарождения новой фазы могут протекать на границах различных фаз жидкость - твердое тело, газ пар - твердое тело, твердое тело - твердое тело, композиционные пасты - твердое тело, жидкость - пар газ

- Молекулярный пучок формируется, например, при испарении вещества. Этот пучок, достигая поверхности конденсации подложки, имеющей температуру значительно ниже температуры испарения, конденсируется на ней, образуя пленку. Если температура конденсации подложки ниже температуры плавления вещества, то сначала образуются зародыши твердой фазы, а затем и сама твердая пленка. Если температура конденсации близка к температуре плавления вещества или выше ее, то формируется жидкая пленка. Однако в любом случае исходным материалом для создания пленки является поток частиц молекул или атомов от испарителя к подложке. Энергия этих частиц практически равна энергии испарения вещества

- В настоящее время существуют две теории гетерогенного образования зародышей конденсированной фазы термодинамическая макроскопическая Гиббса - Фольмера и кинетическая микроскопическая Френкеля - Родина. Первая исходит из условий термодинамического равновесия в системе пар газ - зародыш - подложка, В ней используются такие термодинамические понятия, Как свободная и Поверхностная энергии, степень перенасыщения и др. Такой подход оправдан при небольших перенасыщениях пара, когда критический зародыш состоит из большого числа атомов, а следовательно, к нему применимы термодинамические законы. Однако во многих реальных процессах, когда степень перенасыщения велика 108-1040, критический зародыш оказывается состоящим из одного атома. Описывать термодинамическими уравнениями столь малые агрегаты нельзя. В таком случае возможен лишь кинетический подход. Поэтому далее рассмотрены обе теории гетерогенного образования зародышей

- Если поток частиц J формируется за счет образования ионной плазмы при катодном или другом каком-либо способе распыления, то этот поток имеет сложный состав включая нейтральные атомы, ионы и электроны в различных пропорциях. Так как энергии этих частиц могут отличаться друг от друга, то и характер их взаимодействия с поверхностью подложки будет различным, что скажется на механизме зарождения и роста пленок

- При химическом осаждении пленок например, из газовой фазы характер взаимодействия частиц с поверхностью еще более усложняется. Процесс протекает в несколько стадий

- 1 адсорбция взаимодействующих молекул на этой поверхности

- 2 диффузия молекул

- 3 химическая реакция исходных компонентов с появлением молекул осаждаемого вещества

- 4 адсорбция этих молекул и выделение их в отдельную фазу на поверхности

- десорбция летучих продуктов реакции. Аналогичная картина наблюдается и при электрохимическом осаждении пленок из электролитов

- При рассмотрении механизма зарождения и роста пленок будем исходить из двух предпосылок наличия потока J вещества, направленного к поверхности осаждения, и теоретически чистой поверхности

- Процесс образования зародышей заключается в возникновении и росте агрегатов молекул в результате последовательных бимолекулярных реакций по схеме

Как купить готовую работу?
Авторизоваться
или зарегистрироваться
в сервисе
Оплатить работу
удобным
способом
После оплаты
вы получите ссылку
на скачивание
Страниц
31
Размер файла
2.9 МБ
Просмотров
295
Покупок
0
Устройства функциональной электроники
Купить за 600 руб.
Похожие работы
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
Прочие работы по предмету
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
103 972 студента обратились
к нам за прошлый год
2002 оценок
среднее 4.2 из 5
Александр Спасибо Вам большое за помощь. Работа принята на высокий балл!Очень тяжело было найти исполнителя по данному заказу....
Игорь Отличная работа, рекомендую автора!
Александр Работа выполнена в срок, учтены все пожелания. Большое спасибо!
Александр Работа выполнена в срок. Спасибо большое за выполненную работу!
Александр Заказ выполнен раньше срока. Рекомендую исполнителя.
Иван По программе в учебном заведении резко перенесли сдачи курсовых и дали неделю с половиной на сдачу и распечатку ,...
Александр Курсовую засчитали на отлично. Работа выполнена грамотно, логично, материал хорошо структурирован, правки внесены...
Александр Работа была выполнена быстро и чётко. Результат стоит своих денег.
Александр Работа выполнена хорошо, буду обращаться вновь!
Александр Всë отлично, буду заказывать снова