на первый
заказ
Реферат на тему: Общие сведения о сингулярном разложении и сингулярных матрицах
Купить за 250 руб.Введение
Как известно, химия часто оказывается на перекрестке разных дисциплин. Для химика всегда есть большой соблазн в том, чтобы заняться какой-то чрезвычайно узкой областью, где он останется защищенным от всех превратностей, наслаждаясь удобством положения единственного в своем роде специалиста. Чтобы постоянно быть в курсе дела и в готовности встретить любую новую ситуацию, химику требуется быть знакомым с огромным объемом информации, необходимой не только для движения вперед, но и просто для сохранения своего положения.При написании данного реферата была использована следующая литература, содержащая информацию о сингулярных матрицах и применении их в химии:
- книга "ЭВМ помогает химии" (пер. с англ) под ред. Г. Вернена, М. Шанона, в которой рассмотрено применение ЭВМ в различных областях химии: синтез органических соединений, кристаллография, масс-спектрометрия и т. д.
- книга Ч.Лоусона и Р.Хенсона "Численное решение задач метода наименьших квадратов" (пер. с англ), посвященная изложению численных решений линейных задач метода наименьших квадратов.
Оглавление
- Введение 3- Общие сведения о сингулярном разложении и сингулярных матрицах
- Ортогональное разложение посредством сингулярного разложения
- Вычисление сингулярного разложения
- Применение сингулярных матриц при многомерном анализе химических данных факторными методами
- Общие сведения о факторных методах
- Операции с матрицами и многомерный анализ данных
- Свойства сингулярной матрицы
- Заключение 12
- Список используемой литературы 16
Заключение
Факторные методы (в том числе связанные с использованием сингулярных матриц) ныне широко применяются для анализа данных в химии. Они в основном носят описательный характер и позволяют существенно сократить размерность массива данных при минимальной потере информации и возможности их графического представления.Хотя эти методы и не обладают возможностями моделирования, как регрессионный анализ, их можно применять для идентификации:
- компонентов в многокомпонентных смесях, проанализированных посредством ультрафиолетового, инфракрасного и видимого излучения, флюоресценции, масс-спектрометрии, хроматографии (ФА);
- реальных физических факторов, управляющих экспериментальными данными (целевой факторный анализ):
- группы, к которой можно отнести новый объект в системе исходных групп, на которые был классифицирован первоначальный набор данных (ФДА).
Известная мысль А.Пуанкере о том, что в конечном счёте главной задачей науки является экономия мысли и труда, со всей очевидностью проявилась в разработке в 80-90-х годах ХХ века компьютерных программ для упрощения расчетов, связанных с сингулярными матрицами.
Действительно, в настоящее время химик, желающий применить эти методы к собственным массивам данных, имеет возможность широкого выбора имеющихся в продаже программ для компьютеров. Множество программ было написано для больших, мини- и в последнее время - микрокомпьютеров.
Однако нельзя упустить из виду, что хорошая интерпретация результатов невозможна без знания физико-химических моделей, которые позволяют правильно поставить эксперимент и получить необходимые данные. Следовательно, участие человека будет все еще незаменимо в извлечении полезной информации из распечаток (листингов) с численными результатами и графиками.
Вмешательство химика происходит на различных стадиях:
- при выборе исходных наборов данных, которые корректно представляют все множество исследуемых объектов;
- выборе удовлетворительных методов преобразования данных;
- поиске физического смысла абстрактных факторов;
- интерпретации относительных положений объектов;
- классификации.
Применительно к ближайшему будущему можно выделить два основных параллельных направления развития приложений факторных методов в химии: первое, связано с развитием области применения; второе - с развитием программных средств и совершенствованием методик.
Факторный анализ можно применять:
- для завершения многокомпонентного анализа в частотной области, сравнения спектров и библиотечного поиска, улучшения методик хроматографического определения и т. д.;
- анализа сложных промышленных процессов с большим количеством данных, для которых нельзя создать чистой фундаментальной модели. Факторный анализ этих наборов данных будет первой ступенью в моделировании указанных процессов;
- изучения взаимосвязи структуры с физико-химическими свойствами, такими, как реакционная способность, биологическая активность органических, неорганических и биоорганических соединений;
- рассмотрения химических процессов в окружающей среде с учетом географических и климатических особенностей регионов.
С развитием программных средств и совершенствованием методик факторные методы будут становиться все проще для использования неспециалистами. Отметим здесь только некоторые тенденции:
- интеграция доступных программных средств со множеством вспомогательных программ представления данных, предварительной их обработки, факторного анализа, моделирования, решения задач оптимизации и распознавания образов. Эти средства будут поставлены на персональных компьютерах, что удобно для химиков. Более того, они станут частью автоматизированных систем сбора и обработки данных физико-химического анализа;
- включение в программные средства модулей для проверки предположения о линейности при выборе исходных переменных как непосредственно по экспериментальным результатам, так и по выбранным соотношениям между переменными;
- включение в программные средства модулей оценки погрешности факторных нагрузок, что поможет аналитику оценить реальность выявленных факторов. Целесообразна разработка статистических тестов для использования при решении об отнесении нового объекта к одной из групп;
- использование одновременной обработки многопараметрических наборов данных, что позволит сопоставить методы многокомпонентного анализа, а при обработке массивов данных, зависящих от времени,- исследовать эволюцию химических процессов;
- введение в программное обеспечение концепции искусственного интеллекта. Это поможет аналитику в интерпретации результатов, анализе геометрического представления объектов, а в дальнейшем - в автоматическом моделировании групп и кластеров объектов.
Список литературы
1. ЭВМ помогает химии: Пер. с англ. /Под ред. Г. Вернена, М. Шанона.- Л.: Химия, 1990.- Пер. изд.: Великобритания, 1986. - 384 с.2. Лоусон Ч., Хенсон Р. Численное решение задач метода наименьших квадратов/Пер, с англ. - М.: Наука. Гл. ред. физ.-мат. лит., 1986. - 232 с.
или зарегистрироваться
в сервисе
удобным
способом
вы получите ссылку
на скачивание
к нам за прошлый год