
на первый
заказ
Дипломная работа на тему: Сингулярное разложение в линейной задаче метода именьших квадратов
Купить за 600 руб.Введение
Метод наименьших квадратов обычно используется как составная часть некоторой более общей проблемы. Например, при необходимости проведения аппроксимации наиболее часто употребляется именно метод наименьших квадратов. На этом подходе основаны: регрессионный анализ в статистике, оценивание параметров в технике и т.д.Большое количество реальных задач сводится к линейной задаче наименьших квадратов, которую можно сформулировать следующим образом.
Пусть даны действительная mn-матрица А ранга kmin(m,n) и действительный m-вектор b. Найти действительный n-вектор x0, минимизирующий евклидову длину вектора невязки Аx-b.
Пусть y - n-мерный вектор фактических значений, x - n-мерный вектор значений независимой переменной, b - коэффициенты в аппроксимации y линейной комбинацией n заданных базисных функций :
Задача состоит в том, чтобы в уравнении подобрать такие b, чтобы минимизировать суммы квадратов отклонений е=y-Xb, где X - есть так называемая матрица плана, в которой строками являются n-мерный вектора с компонентами, зависящими от xj: каждая строка соответствует определенному значению xj. Коэффициенты можно найти решая нормальные уравнения , откуда . Покажем это. Возведем в квадрат выражение для е:
т. к. .
Это выражение имеет экстремум в точке, где =0
Откуда и получаем .
Следует отметить, что последнее выражение имеет в определенной степени формальный характер, т. к. решение нормальных уравнений, как правило, проводится без вычисления обратной матрицы (метод Крамера) такими методами как метод Гаусса, Холесского и т. д.
Пример. Пусть заданы результаты четырех измерений (рис. 1): y=0 при x=0; y=1 при x=1; y=2 при x=3; y=5 при x=4. Задача заключается в том, чтобы провести через эти точки прямую таким образом, чтобы сумма квадратов отклонений была минимальна. Запишем уравнение, описывающее проведение прямой по результатам измерений. Мы получаем переопределенную систему:
или Xb=y. Нам понадобится матрица XTX и обратная к ней:
Тогда решение b=(XTX)-1XTy по методу наименьших квадратов будет иметь вид
Таким образом, оптимальная прямая задается уравнением Метод точечной квадратичной аппроксимации (метод наименьших квадратов) не предполагает, что мы должны приближать экспериментальные данные лишь с помощью прямых линий. Во многих экспериментах связи могут быть нелинейными, и было бы глупо искать для этих задач линейные соотношения. Пусть, например, мы работаем с радиоактивным материалом. Тогда выходными данными у являются показания счетчика Гейгера в различные моменты времени t. Пусть наш материал представляет собой смесь двух радиоактивных веществ, и мы знаем период полураспада каждого из них, но не знаем, в каких пропорциях эти вещества смешаны. Если обозначить их количества через С и D, то показания счетчика будут вести себя подобно сумме двух экспонент, а не как прямая:
На практике, поскольку радиоактивность измеряется дискретно и через различные промежутки времени, показания счетчика не будут точно
Рис. 1. Аппроксимация прямой линией.
соответствовать (1). Вместо этого мы имеем серию показаний счетчика в различные моменты времени , и (1) выполняется лишь приближенно:
Если мы имеем более двух показаний, m>2, то точно разрешить эту систему относительно С и D практически невозможно. Но мы в состоянии получить приближенное решение в смысле минимальных квадратов.
Ситуация будет совершенно иной, если нам известны количества веществ С и D и нужно отыскать коэффициенты и . Это нелинейная задача наименьших квадратов, и решить ее существенно труднее. Мы по-прежнему будем минимизировать сумму квадратов ошибок, но сейчас она уже не будет многочленом второй степени относительно и , так что приравнивание нулю производной не будет давать линейных уравнений для отыскания оптимальных решений.
Оглавление
- Введение 3- Метод наименьших квадратов
- Задача наименьших квадратов
- Ортогональное вращение Гивенса
- Ортогональное преобразование Хаусхолдера
- Сингулярное разложение матриц
- QR-разложение
- Число обусловленности
- Реализация сингулярного разложения
- Алгоритмы
- Реализация разложения
- Пример сингулярного разложения
- Использование сингулярного разложения в методе наименьших квадратов
- Заключение 38
- Литература 39
- ПРИЛОЖЕНИЕ 1. Исходные тексты программы
- ПРИЛОЖЕНИЕ 2. контрольный пример
Заключение
В работе описаны компьютерные методы решения задачи наименьших квадратов. Для использования данных методов составлена соответствующая программа на алгоритмическом языке FORTRAN. Программа апробирована, результаты тестирования показывают работоспособность программы.Результаты данной разработки могут быть использованы в самых разнообразных расчетах, где необходимо провести аппроксимацию данных заданными функциями.
Список литературы
1. Беллман Р. Введение в теорию матриц. -М.: Наука, 1969, 368с.2. Гантмахер Ф.Р. Теория матриц. -М.: Наука, 1988, 548с.
3. Ланкастер П. Теория матриц. -М.: Наука, 1982, 387с.
4. Лоусон Ч., Хенсон Р. Численное решение задач наименьших квадратов. М.: Статистика, 1979, 447с
5. Марчук Г.И. Методы вычислительной математики. М.: Наука, 1980
6. Мэйндоналд Дж. Вычислительные алгоритмы в прикладной статистике. М.: Финансы и статистика, 1988, 350с
7. Стренг Г. Линейная алгебра и ее применения. М.: Мир, 1980, 454с
8. Уилкинсон Дж., Райнш К. Справочник алгоритмов на языке АЛГОЛ. Линейная алгебра, М.: Машиностроение, 1976, 390с
9. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. -М.: Физматгиз, 1963, 536с.
10. Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений. М.: Мир, 1980, 279с
11. Харебов К.С. Компьютерные методы решения задачи наименьших квадратов и проблемы собственных значений. Владикавказ.: Изд-во СОГУ, 1995, 76 с.
или зарегистрироваться
в сервисе
удобным
способом
вы получите ссылку
на скачивание
к нам за прошлый год