Внимание! Studlandia не продает дипломы, аттестаты и иные документы об образовании. Наши специалисты оказывают услуги консультирования и помощи в написании студенческих работ: в сборе информации, ее обработке, структурировании и оформления работы в соответствии с ГОСТом. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.
Нужна индивидуальная работа?
Подберем литературу
Поможем справиться с любым заданием
Подготовим презентацию и речь
Оформим готовую работу
Узнать стоимость своей работы
Дарим 200 руб.
на первый
заказ

Реферат на тему: ФИЗИОЛОГИЯ ДЫХАНИЯ а роль СО2 , периферических и центральных хеморецепторов в гуморальной регуляции

Купить за 250 руб.
Страниц
20
Размер файла
24.68 КБ
Просмотров
4
Покупок
0

Оглавление

- ФИЗИОЛОГИЯ ДЫХАНИЯ а роль СО2 , периферических и центральных хеморецепторов в гуморальной регуляции вентиляции легких

- механизм первого вдоха новорожденного

- факторы регуляции кислородной ёмкости крови

- изменения дыхания при физической работе и в условиях высокогорья 2. ФИЗИОЛОГИЯ СПННОГО МОЗГА

- функциональная классификация нейронов спинного мозга, их афферентные и эфферентные связи

- классификация спинальных рефлексов

- функции альфа- и гамма -мотонейронов спинного мозга

- функциональные основы развития спинального шока

- Физиология дыхания

- Дыхание - физиологическая функция, обеспечивающая газообмен О2 и СО2 между окружающей средой и организмом в соответствии с его метаболическими потребностями

- Дыхание протекает в несколько стадий 1 внешнее дыхание - обмен О2 и СО2 между внешней средой и кровью легочных капилляров. В свою очередь внешнее дыхание можно разделить на два процесса а газообмен между внешней средой и альвеолами легких, что обозначается как легочная вентиляция б газообмен между альвеолярным воздухом и кровью легочных капилляров 2 транспорт О2 и СО2 кровью 3 обмен О2 и СО2 между кровью и клетками организма 4 тканевое дыхание

- Дыхание осуществляет перенос О2 из атмосферного воздуха к клеткам организма, а в обратном направлении производит удаление СО2, который является важнейшим продуктом метаболизма клеток

- Транспорт О2 и СО2 в организме человека и животных на значительные расстояния, например в пределах воздухоносных путей, легких и в системе кровообращения, осуществляется конвекционно. Перенос О2 и СО2 на незначительные расстояния, например между альвеолярным воздухом и кровью, а также между кровью и клетками тканей организма осуществляется путем диффузии. Каждая из стадий дыхательной функции в соответствии с метаболическими потребностями клеток организма регулируется нервными и гуморальными механизмами

- роль СО2 , периферических и центральных хеморецепторов в гуморальной регуляции вентиляции легких

- Альвеолярная вентиляция является частью общей вентиляции легких, которая достигает альвеол. Альвеолярная вентиляция непосредственно влияет на содержание О2 и СО2 в альвеолярном воздухе и таким образом определяет характер газообмена между кровью и воздухом, заполняющим альвеолы. В процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Газы, входящие в состав атмосферного, альвеолярного и выдыхаемого воздуха, имеют определенное парциальное partialis - частичный давление, т.е. давление, приходящееся на долю данного газа в смеси газов. Альвеолярный воздух представлен смесью в основном О2, СО2 и N2. Кроме того, в альвеолярном воздухе содержатся водяные пары, которые также оказывают определенное парциальное давление, поэтому при общем давлении смеси газов 760,0 мм рт.ст. парциальное давление 02Ро2 в альвеолярном воздухе составляет около 104,0 мм рт.ст., СО2Рсо2 - 40,0 мм рт.ст. N2PN2 - 569,0 мм рт.ст. Парциальное давление водяных паров при температуре 37 С составляет 47 мм рт.ст

- Различное содержание О2 и СО2 в альвеолярном и выдыхаемом из легких воздуха свидетельствует о том, что в воздухоносных путях легких от трахеи до альвеол существуют многочисленные градиенты концентрации дыхательных газов, фронт которых может динамично смещаться в ту или иную сторону в зависимости от вентиляции легких

- На состав газов в альвеолах легких влияет не только вентиляция легких и величина анатомического мертвого пространства, но и перфузия кровью легочных капилляров. Если вентиляция относительно перфузии избыточна, то состав альвеолярного воздуха приближается к составу вдыхаемого воздуха. Напротив, в случае недостаточной вентиляции состав альвеолярного воздуха приближается к газовому составу венозной крови. Различие в соотношении альвеолярной вентиляции и перфузии легочных капилляров могут возникать как в целом легком, так и в его региональных участках. На особенности локального кровотока в легочных капиллярах влияет прежде всего состав альвеолярного воздуха. Например, низкое содержание О2 гипоксия, а также понижение содержания СО2 гипокапния в альвеолярном воздухе вызывают повышение тонуса гладких мышц легочных сосудов и их сужение

- Основная функция дыхательной системы заключается в обеспечении газообмена О2 и СО2 между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с дыхательным центром продолговатого мозга

- Под дыхательным центром следует понимать совокупность нейронов специфических дыхательных ядер продолговатого мозга, способных генерировать дыхательный ритм

- Поддержание постоянства газового состава внутренней среды организма регулируется с помощью центральных и периферических хеморецепторов

- В нормальных физиологических условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении О2 в крови и концентрации Н во внеклеточной жидкости мозга

- Центральные хеморецепторы расположены в структурах продолговатого мозга, и они чувствительны к изменению рН межклеточной жидкости мозга. Эти рецепторы стимулируются ионами водорода, концентрация которых зависит от рСО2 в крови. При снижении рН интерстициальной жидкости мозга концентрация водородных ионов растет дыхание становится более глубоким и частым. Напротив, при увеличении рН угнетается активность дыхательного центра и снижается вентиляция легких

- Периферические артериальные хеморецепторы расположены в дуге аорты и месте деления общей сонной артерии каротидный синус. Эти рецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение рО2 в крови гипоксемия

- В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различных структур ЦНС. У человека это, например, структуры, обеспечивающие речь. Речь пение может в значительной степени отклонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими афферентными стимулами дыхательного центра, но, в конечном счете, химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может бесконечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии

- Дыхательный центр выполняет две основные функции в системе дыхания моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания О2 и СО2 во внутренней среде организма

- механизм первого вдоха новорожденного

- Известно, что дыхательные движения у плода возникают на 13-й неделе внутриутробного периода. Однако они происходят при закрытой голосовой щели. В период родов нарушается трансплацентарное кровообращение, а при пережатии пуповины у новорожденного - его полное прекращение, что вызывает значительное снижение парциального давления кислорода рО2, повышение рСО2, снижение рН. В связи с этим возникает импульс от рецепторов аорты и сонной артерии к дыхательному центру, а также изменение соответствующих параметров среды вокруг самого дыхательного центра, т.е. гиперкапния и гипоксия раздражают хеморецепторы каротидных и аортальных рефлексогенных зон и хемочувствительные образования дыхательного центра, что приводит к возбуждению его инспираторного отдела и возникновению первого вдоха новорожденного. Так, например, у здорового новорожденного ребенка рО2 снижается с 80 до 15 мм, рт. ст., рСО2 возрастает с 40 до 70 мм. рт. ст., а рН падает ниже 7,35. Наряду с этим имеет значение и раздражение кожных рецепторов. Резкое изменение температуры и влажности вследствие перехода от внутриутробного окружения к пребыванию в атмосфере воздуха в комнате является дополнительным импульсом для дыхательного центра. Меньшее значение, вероятно, имеет тактильная рецепция при прохождении по родовым путям и во время приема новорожденного

- Сокращение диафрагмы создает отрицательное внутригрудное давление, что облегчает вхождение воздуха в дыхательные пути. Более значительное сопротивление вдыхаемому воздуху оказывают поверхностное натяжение в альвеолах и вязкость жидкости, находящейся в легких. Силы поверхностного натяжения в альвеолах уменьшаются сурфактантом. Легочная жидкость быстро всасывается лимфатическими сосудами и кровеносными капиллярами, если происходит нормальное расправление легкого

- Считается, что в норме отрицательное внутрилегочное давление достигает 80 см. вод. ст., а объем вдыхаемого воздуха при первом вдохе составляет более 80 мл., что значительно выше остаточного объема

- Как правило, после нескольких дыхательных движений легочная ткань становится равномерно прозрачной

- Регуляция дыхания осуществляется дыхательным центром, расположенным в ретикулярной формации ствола мозга в области дна IV желудочка. Дыхательный центр состоит из трех частей медуллярной, которая начинает и поддерживает чередование вдоха и выдоха

- Апноэтической, которая вызывает длительный инспираторный спазм расположена на уровне средней и нижней части моста мозга. Пневмотаксической, которая оказывает тормозящее влияние на апноэтическую часть расположена на уровне верхней части моста мозга

- Регуляция дыхания осуществляется центральными и периферическими хеморецепторами, причем центральные хеморецепторы являются основными в 80 в регуляции дыхания. Центральные хеморецепторы более чувствительны к изменению рН, и их главная функция состоит в поддержании постоянства Н ионов в спинномозговой жидкости. СО2 свободно диффундирует через гематоэнцефалический барьер. Нарастание концентрации Н в спинномозговой жидкости стимулирует вентиляцию. Периферические хемо- и барорецепторы, особенно каротидные и аортальные, чувствительны к изменению содержания кислорода и углекислого газа. Они функционально активны к рождению ребенка

- В то же время пневмотаксическая часть дыхательного центра созревает лишь на протяжении первого года жизни, чем и объясняется выраженная аритмичность дыхания. Апноэ наиболее часты и длительны у недоношенных детей, причем, чем ниже масса тела, тем чаще и длительнее апноэ. Это свидетельствует о недостаточной зрелости пневмотаксической части дыхательного центра. Но еще большее значение в прогнозе выживаемости недоношенных детей имеет быстро нарастающее учащение дыхания в первые минуты жизни новорожденного. Это свидетельство недостаточности развития также апноэтической части дыхательного центра

- факторы регуляции кислородной ёмкости крови

- Транспорт О2 осуществляется в физически растворенном и химически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2. Подсчитано, что физически растворенный О2 может поддерживать нормальное потребление О2 в организме 250 млмин-1, если минутный объем кровообращения составит примерно 83 лмин-1 в покое. Наиболее оптимальным является механизм транспорта О2 в химически связанном виде

- Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Давление газов в воде или в тканях организма обозначают термином напряжение газов и обозначают символами Ро2, Рсо2. Градиент О2 на альвеолярно-капиллярной мембране, равный в среднем 60 мм рт.ст., является одним из важнейших, но не единственным, согласно закону Фика, факторов начальной стадии диффузии этого газа из альвеол в кровь

- Транспорт О2 начинается в капиллярах легких после его химического связывания с гемоглобином

- Гемоглобин Нb способен избирательно связывать О2 и образовывать оксигемоглобин НbО2 в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изменяются и он может выполнять свою функцию на протяжении длительного времени

- Гемоглобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина 1 способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной Нb О2 НbО2 с высокой скоростью полупериод 0,01 с и менее при нормальном Рог в альвеолярном воздухе 2 способности отдавать О2 в тканях НbО2 Нb О2 в зависимости от метаболических потребностей клеток организма

- Зависимость степени оксигенации гемоглобина от парциального давления Ог в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина, или сатурационной кривой рис. 8.7. Плато кривой диссоциации характерно для насыщенной О2 сатурированной артериальной крови, а крутая нисходящая часть кривой - венозной, или десатурированной, крови в тканях

- На сродство кислорода к гемоглобину влияют различные метаболические факторы, что выражается в виде смещения кривой диссоциации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей Ро2 рН, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2 уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо уменьшается сродство гемоглобина к О2, а увеличение рН крови - сдвиг кривой диссоциации влево повышается сродство гемоглобина к О2. Например, рН в эритроцитах на 0,2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного содержания СО2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется эффектом Бора

- Рост температуры уменьшает сродство гемоглобина к О2. В работающих мышцах увеличение температуры способствует освобождению О2. Уменьшение температуры тканей или содержания 2,3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации оксигемоглобина

- Метаболические факторы являются основными регуляторами связывания О2 с гемоглобином в капиллярах легких, когда уровень О2, рН и СО2 в крови повышает сродство гемоглобина к О2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О2 и способствуют переходу оксигемоглобина в его восстановленную форму - дезоксигемоглобин. В результате О2 по концентрационному градиенту поступает из крови тканевых капилляров в ткани организма

- Оксид углерода II - СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2. Очень высокое сродство СО к Нb в 200 раз выше, чем у О2 блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2

- Под кислородной емкостью крови понимают количество Ог, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммольл-1 кислородная емкость крови составляет 0,19 мл О2 в 1 мл крови температура 0oC и барометрическое давление 760 мм рт.ст., или 101,3 кПа. Величину кислородной емкости крови определяет количество гемоглобина, 1 г которого связывает 1,36-1,34 мл О2. Кровь человека содержит около 700-800 г гемоглобина и может связать таким образом почти 1 л О2. Физически растворенного в 1 мл плазмы крови О2 очень мало около 0,003 мл, что не может обеспечить кислородный запрос тканей. Растворимость О2 в плазме крови равна 0,225 млл-1кПа-1

- Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью 100 мм рт.ст., или 13,3 кПа и тканями около 40 мм рт.ст., или 5,3 кПа равен в среднем 60 мм рт.ст. 8,0 кПа. Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации О2, который составляет в среднем для организма 30- 40. Коэффициентом утилизации кислорода называется количество О2, отданного при прохождении крови через тканевые капилляры, отнесенное к кислородной емкости крови

- С другой стороны, известно, что при напряжении О2 в артериальной крови капилляров, равном 100 мм рт.ст. 13,3 кПа, на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. 2,7 кПа, а в митохондриях равна в среднем 0,5 мм рт.ст. 0,06 кПа

- изменения дыхания при физической работе и в условиях высокогорье

- Дыхание при физической работе

- При физической нагрузке потребление О2 и продукция СО2 возрастают в среднем в 15-20 раз. Одновременно усиливается вентиляция и ткани организма получают необходимое количество О2, а из организма выводится CO2

- Каждый человек имеет индивидуальные показатели внешнего дыхания. В норме частота дыхания варьирует от 16 до 25 в минуту, а дыхательный объем - от 2,5 до 0,5 л. При мышечной нагрузке разной мощности легочная вентиляция, как правило, пропорциональна интенсивности выполняемой работы и потреблению О2 тканями организма. У нетренированного человека при максимальной мышечной работе минутный объем дыхания не превышает 80 лмин-1, а у тренированного может быть 120-150 лмин-1 и выше. Кратковременное произвольное увеличение вентиляции может составлять 150-200 лмин-1

Как купить готовую работу?
Авторизоваться
или зарегистрироваться
в сервисе
Оплатить работу
удобным
способом
После оплаты
вы получите ссылку
на скачивание
Страниц
20
Размер файла
24.68 КБ
Просмотров
216
Покупок
0
ФИЗИОЛОГИЯ ДЫХАНИЯ а роль СО2 , периферических и центральных хеморецепторов в гуморальной регуляции
Купить за 250 руб.
Похожие работы
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
Прочие работы по предмету
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
103 972 студента обратились
к нам за прошлый год
1984 оценок
среднее 4.2 из 5
Сергей Быстрая и качественная работа
Александр Сделанная курсовая работа отлично, надо было исправить работу так как преподаватель строгий, принял полностью работу...
Алла Работа выполнена на отлично и даже раньше срока, оговоренного нами! Большое спасибо! Рекомендую данного эксперта.
Александр Александр сделал хорошую курсовую, я её конечно доработаю по своему , работой довольна , сделал на 3 недели быстрее...
Наталья Работа выполнена в срок и по всем требованиям, спасибо огромное!
Александр Задачи по дискретной математике были выполнены очень быстро, еще раньше указанного срока И по очень хорошей цене!...
Масма Благодарю за работу, замечаний нет!
Мария Для меня это лучший преподаватель, которого я знаю! Огромную работу, которую выполнила Мария, это было гениально!!!!...
Дмитрий Спасибо! Сделали всё в срок, быстро и качественно
Сергей Сергей, очень хороший специалист, отлично проведенная работа, спасибо огромное