Внимание! Studlandia не продает дипломы, аттестаты и иные документы об образовании. Наши специалисты оказывают услуги консультирования и помощи в написании студенческих работ: в сборе информации, ее обработке, структурировании и оформления работы в соответствии с ГОСТом. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.
Нужна индивидуальная работа?
Подберем литературу
Поможем справиться с любым заданием
Подготовим презентацию и речь
Оформим готовую работу
Узнать стоимость своей работы
Дарим 200 руб.
на первый
заказ

Дипломная работа на тему: Основы порошковой металлургии. Способы получения и технологические свойства порошков

Купить за 600 руб.
Страниц
27
Размер файла
83.52 КБ
Просмотров
86
Покупок
0
Металлокерамика, или порошковая металлургия - отрасль технологии, занимающаяся производством металлических порошков и деталей из них. Сущность порошковой металлургии заключается в том, что из

Введение

Порошковыми называют материалы, изготовляемые путем прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме или защитной атмосфере при температуре 0,75-0,8ТПЛ. Различают пористые и компактные порошковые материалы.

Пористыми называют материалы, в которых после окончательной обработки сохраняется 10-30% остаточной пористости. Эти сплавы используют главным образом для изготовления антифрикционных деталей (подшипников, втулок) и фильтров.

Антифрикционные порошковые сплавы имеют низкий коэффициент трения, легко прирабатываются, выдерживают значительные нагрузки и обладают хорошей износостойкостью.

Подшипники из порошковых сплавов могут работать без принудительного смазывания за счет "выпотевания" масла, находящегося в порах.

Подшипники изготовляют из сплавов железа и 1-7% графита (ЖГр1, ЖГрЗ, ЖГр7) и бронзографита, содержащего 8-10% Sn и 2-4% графита (БрОГр10-2, БрОГр8-4 и др.).

Структура металлической основы железографитовых материалов должна быть перлитной, с массовой долей связанного углерода ~1,0%. Такая структура допускает наиболее высокие скорости и нагрузки при наименьшем износе подшипников. Добавка к железографитовым материалам серы (0,8-1,0%) или сульфидов (3,5-4,0%), образующих сульфидные пленки на трущихся поверхностях, улучшает прирабатываемость, уменьшает износ и прихватываемость сопряженных деталей.

Коэффициент трения железографита по стали при смазке 0,07-0,09. Подшипники из железографита применяют при допустимой нагрузке не более 1000-1500 МПа и максимальной температуре 100-200°С. Коэффициент трения бронзографита по стали без смазывания 0,04-0,07 и со смазыванием 0,05-0,007. Допустимая нагрузка 400-500 МПа и рабочая температура не выше 200-250°С.

Механические свойства железографита: σВ=180÷300 МПа и твердость 60-120 НВ, а бронзиграфита: σВ=30÷50 МПа, твердость 25-50 НВ.

Спеченные материалы на основе железа и меди используют и для фрикционных изделий (дисков, сегментов) в тормозных узлах. Фрикционные изделия должны иметь высокий коэффициент трения, достаточную механическую прочность и хорошее сопротивление износу. Для повышения коэффициента трения в состав фрикционных материалов вводят карбиды кремния, бора, тугоплавкие оксиды и т.д. Компонентами твердого смазочного материала служат графит, свинец, сульфиды и др.

Коэффициент трения по чугуну (трение без смазочного материала) для материала на железной основе составляет 0,18-0,40, а на медной основе - 0,17-0,25.

Фрикционные сплавы на медной основе применяют для условий жидкостного трения в паре с закаленными стальными деталями (сегменты, диски сцепления и т.д.) при давлении до 400 МПа и скорости скольжения до 40 м/с с максимальной температурой 300-350°С. Типичным фрикционным материалом на основе меди является сплав МК5, содержащий 4% Fе, 7% графита, 8% Рb, 9% Sn, 0-2% Ni.

Для работы в условиях трения без смазочного материала (деталей тормозов самолетов, тормозных накладок тракторов, автомобилей, дорожных машин, экскаваторов и т.д.) применяют материалы на железной основе. Наибольшее применение получил материал ФМК-11 (15% Сu, 9% графита, 3% асбеста, 3% SiO2 и 6% барита), фрикционные материалы изготовляют в виде тонких секторов (сегментов, полос) и крепят на стальной основе (для упрочнения).

Широко применяют порошковые материалы для фильтрующих изделий. Фильтры в виде втулок, труб, пластин из порошков Ni, Fе, Тi, Аl, коррозионно-стойкой стали, бронзы и других материалов g пористостью 45-50% (размер пор 2-20 мкм) используют для очистки жидкостей и газов от твердых примесей.

В электротехнике и радиотехнике применяют порошковые магниты на основе Fе-Ni-А1-сплава (типа алнико) и др. Свойства порошковых магнитов нередко выше свойств литых магнитов.

Большое применение в машинах для контактной сварки, приборах связи получили контакты из порошковых материалов. Для этой цели применяют псевдосплавы тугоплавких металлов (W и Мо) с медью (МВ20, МВ40, MB60, MB80), серебром (СМ30, СМ60, СМ80, СВ30, СВ50, СВ85 и др.) или с оксидом кадмия (ОК8, ОК12, ОК15) и др. Контакты отличаются высокой прочностью, электропроводимостью и электроэрозионной стойкостью. Токосъемники (щетки) изготовляют из порошков меди (или серебра) с графитом (углем).

Все больше порошковая металлургия применяется для изготовления специальных сплавов: жаропрочных на никелевой основе, дисперсионно-упрочненных материалов на основе Ni, Аi, Тi и Сr. Методом порошковой металлургии получают различные материалы на основе карбидов W, Мо и Zr.

Спеченные алюминиевые сплавы (САС) применяют тогда, когда путем литья и обработки давлением трудно получить соответствующий сплав. Изготовляют CAC с особыми физическими свойствами. САС содержат большое количество легирующих элементов (например, САС1: 25-30% Si, 5-7% Ni, остальное Аl). Из САС1 делают детали приборов, работающих в паре со сталью при температуре 20-200°С, которые требуют сочетания низкого коэффициента линейного расширения и малой теплопроводности.

В оптико-механических и других приборах применяют высокопрочные порошковые сплавы системы А1-Zn-Мg-Си (ПВ90, ПВ90Т1 и др.). Эти сплавы обладают высокими механическими свойствами, хорошей обрабатываемостью резанием и релаксационной стойкостью. Изделия из этих сплавов подвергают термической обработке по режимам Т1 и Т2 (см. с. 396).

Применяют гранулированные специальные сплавы с высоким содержанием Fе, Ni, Со, Мn, Сr, Zr, Тi, V и других элементов, мало растворимых в твердом алюминии. Гранулы - литые частицы диаметром от десятых долей до нескольких миллиметров. При литье центробежным способом капли жидкого металла охлаждаются в воде со скоростью 104-106°С/с, что позволяет получить сильно пересыщенные твердые растворы переходных элементов в алюминии. При последующих технологических нагревах (400-450°С) происходит распад твердого раствора с образованием дисперсных фаз, упрочняющих сплав.

Все более широкое применение получают компактные материалы (1-3% пористости) из порошков углеродистой и легированной стали, бронз, латуней, сплавов алюминия и титана для изготовления всевозможных шестерен, кулачков, кранов, корпусов подшипников, деталей автоматических передач и других деталей машин.

Изготовляют большое количество порошковых конструкционных (СП10-1 ... СП10-4, СП30-1 ... СП30-4, СП30Д3-2, СП60Н2Д2-2, СП30Н3М-2, СП40Х-2, СП45Х3-2 и др.), мартенситно-стареющих (СПН12К5М5Г4ТЮ, СПН12Х5М3Т и др.), коррозионно-стойких (СПХ17Н2, СПХ18Н15, СПХ23Н28 и др.) и других сталей. В маркировке сталей добавочно введены буква "С", которая указывает класс материала - сталь, и буква "П" - порошковая. Цифра после дефиса показывает плотность стали в процентах. Стали подвергают термической обработке.

Свойства сталей, полученных из порошков после термической обработки, во многих случаях уступают свойствам сталей, полученных обычными металлургическими методами. Механические свойства порошковой стали зависят от плотности и содержания кислорода. При пористости более 3% заметно уменьшаются σВ, σ0,2, KCU, а порог хладноломкости t50 повышается даже при увеличении пористости более 2%. С повышением содержания кислорода более 0,01% снижается KCU и повышается t50.

Поэтому рекомендовать порошковую технологию для высоконагруженных стальных деталей нельзя. Вследствие более низких механических свойств, высокой стоимости исходного материала и энергоемкости процесса спекания порошковая конструкционная сталь может быть использована только для изготовления мало нагружаемых изделий, главным образом сложной формы.

Сплавы на основе цветных металлов (АЛП-2, АЛПД-2-4, АЛПЖ12-4, БрПБ-2, БрПО10-2, БрПО10Ц3-3, ЛП58Г2-2 и др.) нашли широкое применение в приборостроении электротехнической промышленности и электронной технике. В марке сплавов первые буквы, указывают класс материала ("Ал" - алюминий, "Б" - берилий, "Бр" - бронза, "Л" - латунь и т.д.), буква "П" - порошковый сплав и число после дефиса - плотность материала в процентах. Буквы ("Д" - медь, "Ж" - железо, "Г" - марганец и др.) и цифры в марке указывают состав сплава. Так же как обычные сплавы, порошковые сплавы на основе цветных металлов обладают высокой теплопроводностью и электропроводимостью, коррозионной стойкостью, немагнитны, хорошо обрабатываются резанием и давлением.

Порошковая металлургия позволяет увеличить коэффициент использования металла и повысить производительность труда.

Экономическая эффективность достигается благодаря сокращению или полному исключению механической обработки. Вследствие высокой стоимости пресс-форм изготовление деталей машин методами порошковой металлургии эффективно только в массовом производстве.

Применение порошковых материалов рекомендуется при изготовлении деталей простой симметричной формы (цилиндрические, конические, зубчатые), малых массы и размеров. Конструктивные формы детали не должны содержать отверстий под углом к оси заготовки, выемок, внутренних полостей и выступов. Конструкция и форма детали должны позволять равномерно заполнять полость пресс-формы порошками, их уплотнение, распределение напряжений и температуры при прессовании и удалении изделия из пресс-формы.

Оглавление

- Основы порошковой металлургии

- Способы получения и технологические свойства порошков

- Металлокерамические материалы

- Конструкционные порошковые материалы

- Изготовление металлокерамических деталей

- Приготовление смеси

- Способы формообразования заготовок и деталей

- Спекание и окончательная обработка заготовок

- Технологические требования, предъявляемые к конструкциям деталей из металлических порошков

- Композиционные материалы с металлической матрицей

- Волокнистые композиционные материалы

- Дисперсно-упрочненные композиционные материалы

- Композиционные материалы с неметаллической матрицей

- Общие сведения, состав и классификация

- Карбоволокниты

- Карбоволокниты с углеродной матрицей

- Бороволокниты

- Органоволокниты

- Литература 18

- Основы порошковой металлургии

- Способы получения и технологические свойства порошков Металлокерамика, или порошковая металлургия - отрасль технологии, занимающаяся производством металлических порошков и деталей из них. Сущность порошковой металлургии заключается в том, что из металлического порошка или смеси порошков прессуют заготовки, которые затем подвергают термической обработке - спеканию

- Порошковой металлургией можно получать детали из особо тугоплавких металлов, из нерастворимых друг в друге металлов вольфрам и медь, железо и свинец и т. д., пористые материалы и детали из них, детали, состоящие из двух биметаллы или нескольких слоев различных металлов и сплавов

- Металлические порошки состоят из очень мелких частиц 0,5-500 мкм различных металлов и их окислов. Порошки получают механическим и физико-химическим путем

- Для механического измельчения твердых и хрупких материалов применяют шаровые, вибрационные мельницы и бегуны. Порошки из пластичных и легкоплавких металлов и сплавов получают различными способами, основанными на раздуве жидкого материала струей воды или газа. Механическим путем, как правило, получают порошки из отходов основного производства

- К физико-химическим способам получения порошков относят восстановление окислов металлов, электролиз и др

- Окислы металлов можно восстанавливать газообразными или твердыми восстановителями. Наибольшее практическое применение нашли газообразные углеродистые и углеводородистые соединения природный газ, доменный, углекислый газ и водород. Электролизом водных растворов солей получают тонкие и чистые порошки различных металлов и сплавов. Порошки из редких металлов тантала, циркония, титана и др. получают электролизом расплавленных солей. Режимы и технология изготовления порошков физико-химическим путем приведены в справочной литературе

- Основными технологическими свойствами порошков являются текучесть, прессуемость и спекаемость

- Текучесть - способность порошка заполнять форму. Текучесть ухудшается с уменьшением размеров частиц порошка и повышением влажности. Количественной оценкой текучести является скорость вытекания порошка через отверстие диаметром 1,5-4,0 мм в секунду

- Прессуемость характеризуется способностью порошка уплотняться под действием внешней нагрузки и прочностью сцепления частиц после прессования. Прессуемость порошка зависит от пластичности материала частиц, их размеров и формы и повышается с введением в его состав поверхностно-активных веществ

- Под спекаемостъю понимают прочность сцепления частиц в результате термической обработки прессованных заготовок

Список литературы

1. Гуляев А.П. "Металловедение", М.: 1968.

2. Дальский А.М. "Технология конструкционных материалов", М.: 1985.

3. Куманин И.Б. "Литейное производство", М.: 1971.

4. Лахтин Ю.М. "Материаловедение", М.: 1990.

5. Семенов "Ковка и объемная штамповка", М.: 1972.

Как купить готовую работу?
Авторизоваться
или зарегистрироваться
в сервисе
Оплатить работу
удобным
способом
После оплаты
вы получите ссылку
на скачивание
Страниц
27
Размер файла
83.52 КБ
Просмотров
468
Покупок
0
Основы порошковой металлургии. Способы получения и технологические свойства порошков
Купить за 600 руб.
Похожие работы
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
Прочие работы по предмету
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
103 972 студента обратились
к нам за прошлый год
2000 оценок
среднее 4.2 из 5
Александр Работа выполнена в срок, учтены все пожелания. Большое спасибо!
Александр Работа выполнена в срок. Спасибо большое за выполненную работу!
Александр Заказ выполнен раньше срока. Рекомендую исполнителя.
Иван По программе в учебном заведении резко перенесли сдачи курсовых и дали неделю с половиной на сдачу и распечатку ,...
Александр Курсовую засчитали на отлично. Работа выполнена грамотно, логично, материал хорошо структурирован, правки внесены...
Александр Работа была выполнена быстро и чётко. Результат стоит своих денег.
Александр Работа выполнена хорошо, буду обращаться вновь!
Александр Всë отлично, буду заказывать снова
Антон Большое спасибо за работу! Всё хорошо курсовой остался доволен
Иван Хочу выразить огромную благодарность Ивану, работа сделана прекрасно, даже раньше срока. Замечаний никаких совершенно...