
на первый
заказ
Дипломная работа на тему: Проектирование привода горизонтального канала
Купить за 600 руб.Введение
Автоматическое управление различными объектами приводит к необходимости разработки создания сложных систем, включающих в себя вычислительные машины, автоматические регуляторы, исполнительные устройства т.п.В системах управления широкое применение получили устройства с механическим выходом, т.е. автоматизированные приводы, в которых в подавляющем большинстве случаев перемещение выходного звена пропорционально (или равно) входной управляющей координате. Автоматизированные приводы с указанными свойствами относятся к классу следящих систем.
Выходной вал следящего привода с определённой степенью точности воспроизводит в виде механического перемещения входной управляющий сигнал. При этом исполнительный двигатель должен преодолевать имеющиеся на выходном валу нагрузки (возмущающие воздействия) и развивать скорости и ускорения, обеспечивающие его слежение за входным управляющим воздействием, а система управления двигателем должна обеспечивать необходимую точность слежения, которые, как правило, должны обладать высокой динамической точностью.
Требуемые динамические свойства привода и типичные законы изменения управляющих и возмущающих воздействий зависят от назначения системы управления в целом и функций, выполняемых в ней приводом. По этим признакам следящие системы могут быть разбиты на следующие группы: приводы систем автоматического сопровождения, приводы пусковых устройств, приводы устройств гиростабилизированных платформ, приборные приводы и т.д.
Данная работа посвящена проектированию привода системы, относящейся к классу систем автоматического сопровождения (САС). К этой группе относятся приводы широкого класса систем, предназначенных для слежения за объектами, перемещающимися в пространстве (приводы систем радиолокационных камер, оптических визиров, координаторов, астроориентиров). Требования к динамике определяются законом движения объекта и условиями наилучшей фильтрации случайной составляющей входного сигнала. Необходимо учитывать и значительные возмущения в виде "ветрового момента". Приводы, установленные на подвижном основании, должны обеспечивать высокую точность отработки угловых колебаний основания.
Основные задачи проектирования состоят в выявлении требуемых динамических свойств привода, в выборе исполнительного двигателя, обладающего нужными предельными динамическими возможностями, определении метода разработки системы управления, которая при максимальной простоте и надёжности и минимальных габаритах и весе обеспечивает необходимую динамику и точность.
При проведении расчетов были использована пакеты прикладных программ МаthCAD 6.0 plus, МаthCAD 7.0 и MathLab 5.0.
Оглавление
- Введение 6- Обоснование актуальности темы и постановка задачи
- Обзор литературы по следящим приводам
- Разработка алгоритма проектирования следящего привода
- Определение зависимости скорости и ускорения наведения АОП от дальности
- Расчет потребной мощности ЭДВ
- Определение типа и параметров ЭДВ
- Наименование характеристик
- Расчет зон работы следящего привода
- Определение параметров математической модели двигателя
- Формирование скоростного контура привода ГН
- Определение параметров корректирующих устройств скоростного привода
- Формирование контура наведения и стабилизации с определением параметров корректирующих устройств
- Определение точностных характеристик
- Разработка конструкции и технология изготовления БУ следящего привода
- Конструкция платы БУ привода
- Технологическая часть
- Расчет показателей надежности БУ следящего привода
- Охрана труда и окружающей среды
- Охрана труда
- Анализ вредных и опасных производственных факторов
- Требования к производственному помещению
- Микроклиматические условия производственного помещения и вентиляция
- Требования к освещению производственного помещения
- Техника безопасности
- Охрана окружающей среды
- Организационно-экономический раздел
- Составление и расчет сетевого графика
- Расчет затрат на проектирование и изготовление следящего электропривода
- Заключение 93
- Библиографический список 94
- Приложения
- Реферат
Заключение
В данном дипломном проекте спроектирован привод горизонтального канала наведения и стабилизации ОЭС. В соответствии с расчетом выбран двигатель привода - ДМБ (двигатель бесконтактный магнитный), имеющий ряд существенных преимуществ по сравнению с другими существующими двигателями данного класса, разработаны функциональная схема и структурная схема линейной математической модели следящего привода. Синтез системы производился исходя из требований по времени переброса и точности слежения за подвижным объектом в условиях воздействия качек на носитель следящей системы. Найденные параметры модели привода горизонтального канала наведения и стабилизации ОЭС обеспечивают ошибку слежения 0,1 мрад, время переходного процесса 0,025 с и величину перерегулирования 2,5%, что удовлетворяет требованиям к системам данного класса точности и техническому заданию.На основании современных методов проектирования разработана конструкция печатной плат БУ привода, технологические процессы их изготовления, произведен расчет теплового режима работы платы и надежность эксплуатации устройства.
Большое внимание охране труда и окружающей среды. Произведен расчет параметров производства печатных плат БУ привода ГКНиС: количество людей, занятых непосредственно изготовлением изделий, размеры цеха, установка оборудования, вентиляция, освещение. Определена категория пожаробезопасности производства (III), предложена схема эвакуации людей при пожаре и расположение противопожарного оборудования. Количество вредных выбросов при производстве изделия не превышают ПДК.
Экономической часть включает в себя составление сетевого плана проектирования и изготовления опытного образца привода ГКНиС ОЭС, расчет критического пути, который составил 75 дней, и расчет себестоимости ОКР и стоимости опытного образца (257376 руб. и 190937,7 руб. соответственно).
Список литературы
1. Проектирование следящих систем. Колл. авторов. Под ред. Л.В. Рабиновича.М.: Машиностроение, 1969.-500 с.2. Следящие приводы. В 2-х кн. Под ред. Б.К. Чемоданова.-М.: Энергия, 1976.-384 с., ил.
3. Макаров И.М., Менский Б.М. Линейные автоматические системы.-2-е изд., перераб. и доп.-М.: Машиностроение, 1982.-504 с., ил.
4. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования.-3-е изд.,исправленное.-М.: Наука, 1975.-768 с., ил.
5. Техническая кибернетика. Теория систем автоматического регулирования. Книга 1. Колл. авторов. Под ред. В.В. Солодовникова. -М.: Машиностроение, 1967.-770 с.
6. Изерман Р. Цифровые системы управления. Пер. с англ.-М.: Мир, 1984.-541 с., ил.
7. Гурецкий Х. Анализ и синтез систем управления с запаздыванием. Пер. с польского.-М.: Машиностроение, 1974.-328 с.
8. Павловский М.А. Теория гироскопов.-К.: Вища шк. Головное изд-во, 1986.-303 с., ил.
9. Одинцов А.А. Теория и расчетгироскопических приборов.-К.: Вища шк. Головное изд-во, 1985.-392 с., ил.
10. Справочник конструктора РЭА. Общие принципы конструирования / Под редакцией Варламова Р.Г. - М.:Советское радио, 1980.-480 с.
11. Жукова Г.А., Жуков В.П. Курсовое и дипломное проектирование по низковольтным электрическим аппаратам.-М.: Высш. шк., 1987.-160 с.
12. Гусев А.И. Проектирование устройств автоматики и телемеханики. - Саратов: СПИ, 1978.-72 с.
13. Митрейкин И.А., Озерский А.И. Конструирование аппаратуры автоматики и телемеханики.-М.: Машиностроение, 1975.-272 с.
14. Жигалов А.Т. Конструирование и технология печатных плат. - М.: Высшая школа, 1983.
15. Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга. - М.: Энергоатомиздат, 1983.
16. Справочник проектировщика санитарно-технических устройств. В 3-х ч. / Под ред. И.Г. Староверова. - М.: Стройиздат, 1978.
17. Козлов Б.А., Ушаков И.А. Справочник по расчёту надёжности аппаратуры радиоэлектроники и автоматки.-М.: Сов. радио, 1975.-471 с.
18. Сотсков Б.С. Основы теории и расчёта надёжности элементов и устройств автоматики и вычислительной техники. - М.:Высш. шк., 1970.-271 с.
или зарегистрироваться
в сервисе
удобным
способом
вы получите ссылку
на скачивание
к нам за прошлый год