Внимание! Studlandia не продает дипломы, аттестаты и иные документы об образовании. Наши специалисты оказывают услуги консультирования и помощи в написании студенческих работ: в сборе информации, ее обработке, структурировании и оформления работы в соответствии с ГОСТом. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.
Нужна индивидуальная работа?
Подберем литературу
Поможем справиться с любым заданием
Подготовим презентацию и речь
Оформим готовую работу
Узнать стоимость своей работы
Дарим 200 руб.
на первый
заказ

Дипломная работа на тему: Анализ свариваемости сплавов основе меди

Купить за 600 руб.
Страниц
25
Размер файла
783.78 КБ
Просмотров
5
Покупок
0

Введение

Медь (лат. Cuprum) - химический элемент I группы периодической системы Менделеева (атомный номер 29, атомная масса 63,546). В соединения медь обычно проявляет степени окисления +1 и +2, известны также немногочисленные соединения трехвалентной меди. Важнейшие соединения меди: оксиды Cu2O, CuO, Cu2O3; гидроксид Сu(ОН)2, нитрат Сu(NO2)2*3H2O, сульфид CuS, сульфат(медный купорос) CuSO4*5H2O, карбонат CuCO3*Сu(ОН)2, хлорид CuCl2*2H2O.

Медь - один из семи металлов, известных с глубокой древности. Переходный период от каменного к бронзовому веку (4 - 3-е тысячелетие до н.э.) назывался медным веком или халколитом ( от греческого chalkos - медь и lithos - камень) или энеолитом (от латинского aeneus - медный и греческого lithos - камень). В этот период появляются медные орудия. Известно, что при возведении пирамиды Хеопса использовались медные инструменты.

Чистая медь - ковкий и мягкий металл красноватого, в изломе розового цвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93 г/см3) , отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083 °С). Медь легко вытягивается в проволоку и прокатывается в тонкие листы, но сравнительно мало активна. В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соответствующих солей:

В атмосфере, содержащей CO2, пары H2O и др., покрывается патиной - зеленоватой пленкой основного карбоната, ядовитого вещества.

Медь входит более чем в 170 минералов, из которых для промышленности важны лишь 17, в том числе: борнит (пестрая медная руда - Cu5FeS4), халькопирит (медный колчедан - CuFeS2), халькозин (медный блеск - Cu2S), ковеллин (CuS), малахит (Сu 2 (ОН)2CO3). Встречается также самородная медь.

Производство меди

Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд. Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования. В процессе обжига большая часть примесных сульфидов превращается в оксиды. Так, главная примесь большинства медных руд пирит FeS2 превращается в Fe2O3. Газы, образующиеся при обжиге, содержат CO2, который используется для получения серной кислоты. Получающиеся в процессе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Жидкий медный штейн (Cu2S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных (Аu, Аg, Те и т.д.) и для удаления вредных примесей черновая медь подвергается сначала огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка и кобальта окисляются, переходят в шлак и удаляются. А медь разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.

Основным компонентом раствора при электролитическом рафинировании служит сульфат меди - наиболее распространенная и дешевая соль меди. Для увеличения низкой электропроводности сульфата меди в электролит добавляют серную кислоту. А для получения компактного осадка меди в раствор вводят небольшое количество добавок. Металлические примеси, содержащиеся в неочищенной ("черновой") меди, можно разделить на две группы:

1) Fе, Zn, Ni, Со. Эти металлы имеют значительно более отрицательные электродные потенциалы, чем медь. Поэтому они анодно растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите в виде сульфатов. Поэтому электролит необходимо периодически заменять.

2) Аu, Аg, Рb, Sn. Благородные металлы (Аu, Аg) не претерпевают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который периодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соединения, выпадающие в осадок и также удаляемые.

Применение меди

Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности. В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы. Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры. Высокая вязкость и пластичность металла позволяют применять медь для изготовления разнообразных изделий с очень сложным узором. Проволока из красной меди в отожженном состоянии становится настолько мягкой и пластичной, что из нее без труда можно вить всевозможные шнуры и выгибать самые сложные элементы орнамента. Кроме того, проволока из меди легко спаивается сканым серебряным припоем, хорошо серебрится и золотится. Эти свойства меди делают ее незаменимым материалом при производстве филигранных изделий. Коэффициент линейного и объемного расширения меди при нагревании приблизительно такой же , как у горячих эмалей, в связи с чем при остывании эмаль хорошо держится на медном изделии, не трескается , не отскакивает. Благодаря этому мастера для производства эмалевых изделий предпочитают медь всем другим металлам. Как и некоторые другие металлы, медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса CuSO4*2H2O. В большом количестве он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь необходима всему живому.

Оглавление

- 1. Введение 3

- Структура и свойства меди

- Характеристика меди и ее сплавов

- Пористость

- Особенности технологии сварки

- Подготовка под сварку

- Газовая сварка

- Ручная сварка

- Автоматическая сварка под флюсом

- Электрошлаковая сварка меди и ее сплавов

- Дуговая сварка в защитных газах

- Свариваемость меди

- Вывод

- 8. Список литературы 30

Список литературы

1. М.В.Мальцев "Металлография промышленных цветных металлов и сплавов" (2 изд. Изд-во "Металлургия", 1970, 364с.)

2. Справочник "Сварка и свариваемые материалы" (Том 1. Изд-во "Металлургия" 1991г.)

3. Теория сварочных процессов /Под ред. В.В. Фролова/. - М.:Высшая школа, 1988.-599 с.

4. Технология и оборудование сварки плавлением /Под ред. Г.Д. Никифорова/,-2-е изд. -М.: Машиностроение, 1986?/ - 320 с.

5. Технологические основы сварки и пайки в авиастроении. /Под ред. В.А. Фролова/. -М.:Интермет-инжиниринг, 2002. -456 с.

7. "Материаловедение" учебник для ВУЗов /Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др. Под общ. Ред. Б.Н. Арзамасова, Г.Г. Мухина. -3-е изд., переработ. И доп. - М.:Изд-во МГТУ им. Н.э. Баумана, 2001. - 648 с., ил.

Как купить готовую работу?
Авторизоваться
или зарегистрироваться
в сервисе
Оплатить работу
удобным
способом
После оплаты
вы получите ссылку
на скачивание
Страниц
25
Размер файла
783.78 КБ
Просмотров
373
Покупок
0
Анализ свариваемости сплавов основе меди
Купить за 600 руб.
Похожие работы
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
Прочие работы по предмету
Сумма к оплате
500 руб.
Купить
Заказать
индивидуальную работу
Гарантия 21 день
Работа 100% по ваши требованиям
от 1 000 руб.
Заказать
103 972 студента обратились
к нам за прошлый год
1984 оценок
среднее 4.2 из 5
Сергей Быстрая и качественная работа
Александр Сделанная курсовая работа отлично, надо было исправить работу так как преподаватель строгий, принял полностью работу...
Алла Работа выполнена на отлично и даже раньше срока, оговоренного нами! Большое спасибо! Рекомендую данного эксперта.
Александр Александр сделал хорошую курсовую, я её конечно доработаю по своему , работой довольна , сделал на 3 недели быстрее...
Наталья Работа выполнена в срок и по всем требованиям, спасибо огромное!
Александр Задачи по дискретной математике были выполнены очень быстро, еще раньше указанного срока И по очень хорошей цене!...
Масма Благодарю за работу, замечаний нет!
Мария Для меня это лучший преподаватель, которого я знаю! Огромную работу, которую выполнила Мария, это было гениально!!!!...
Дмитрий Спасибо! Сделали всё в срок, быстро и качественно
Сергей Сергей, очень хороший специалист, отлично проведенная работа, спасибо огромное