
на первый
заказ
Решение задач на тему: Расчет теплоутилизационной установки вторичных энергоресурсов
Купить за 100 руб.Введение
Химический комплекс, оказывая существенное воздействие на ускорение научно-технического прогресса в отраслях-потребителях его продукции, превосходит средние удельные показатели по энергоемкости в 2-3 раза. При этом следует учитывать, что в химических отраслях промышленности потребление топливно-энергетических ресурсов (ТЭР) определяется условиями протекания химических реакций, сопровождаемых тепловым эффектом, и в обозримом будущем не следует ожидать его снижения.В последние годы структура потребления ТЭР менялась незначительно, несмотря на существенный рост энергетических затрат в отрасли (за период с 1985 по 2000 г. - в два раза). В виде тепловой энергии потребляется 48,3%, электроэнергии - 30,2% и первичного топлива - 12,5% (без учета топлива, используемого в качестве сырья).
В химической промышленности непосредственное потребление топлива на энергетические цели составляет около 1/8 суммарного энергопотребления. Около 40% сжигается в промышленных котельных и на ТЭУ для производства тепловой и электрической энергии. Остальная часть топлива (преимущественно твердого и газообразного) используется в технологических установках.
В отраслях химического комплекса основной источник потерь энергии связан с путями ее использования. Например, КПД процесса синтеза аммиака колеблется в пределах 40-50% в зависимости от вида сырья. Энергетический КПД для обычных методов получения винилхлорида - 12-17%, для синтеза NО - всего лишь 5-6,5% и т.д. Высокотемпературные химические процессы (>4000С) сопровождаются потерями энергии, достигающими в среднем 68%.
Подобное состояние дел определяется не только объективными причинами. По традиции химики-технологи во главу угла ставят вопросы увеличения выхода продукта реакции и конверсии сырья, но не создания энергетически эффективных технологических процессов.
Для коренного улучшения ситуации в химической отрасли, касающейся рационального использования ТЭР, разработана энергетическая программа СНГ, согласно которой намечаются следующие основные направления:
- Изменение структуры производства с вытеснением энергоемких видов химической продукции менее энергоемкими;
- Интенсификация, оптимизация параметров и режимов производственных процессов;
- Создание принципиально новых химических технологий;
- Электрификация технологических процессов;
- Создание химических производств с использованием ядерных источников энергии.
Наряду с энергетической рационализацией самих химических методов (технологии) и аппаратурного оформления, необходимо выявлять вторичные источники энергии и использовать их. По подсчетам специалистов этот путь является вдвое-втрое более выгодным, чем дополнительная добыча и транспортировка эквивалентного количества топлива.
Использование вторичных энергетических ресурсов (ВЭР)
В химических отраслях достаточно хорошо используются ВЭР с высоким температурным потенциалом (tж>1500С, tг>3000С). С помощью этих теплоносителей в котлах-утилизаторах производится пар, который направляется либо в технологический цикл, либо на привод турбомашин. Совершенно иная ситуация с низкопотенциальными сбросными тепловыми потоками (НТП). Традиционные решения утилизации теплоты НТП неприемлемы и по техническим, и по экономическим соображениям. В то же время доля НТП в химической отрасли доходит до 50% всех вторичных энергетических ресурсов.
Использование низкопотенциальных ВЭР связано с решением двух задач:
- созданием надежной и эффективной системы теплопотребления;
- Созданием надежного утилизационного оборудования.
В отечественной и зарубежной практике пока имеется очень небольшой опыт использования основных видов НТП - отходящих дымовых газов, сбросных вод, циркулирующих и продукционных потоков, конденсата, вторичного пара и т.п. Тем не менее, можно указать следующие основные технические средства утилизации:
- Многоступенчатые установки с аппаратами мгновенного вскипания для использования теплоты загрязненных стоков;
- Многоступенчатые установки с аппаратами типа "тепловая труба" для использования теплоты агрессивных жидкостей;
- Контактные аппараты с различными насадками для использования теплоты отходящих газов (ОГ);
- Абсорбционные холодильные установки (водоаммиачные, бромистолитиевые и др.);
- Скрубберно-солевые установки для утилизации теплоты дымовых газов;
- Тепловые насосы (пароструйные, абсорбционные и компрессионные) для производства холода и теплоснабжения;
- Рекуперационные агрегаты для использования теплоты паровоздушной смеси в схеме рециркуляции;
- Регенеративные вращающиеся теплообменники, пластинчатые рекуператоры, теплообменники с промежуточным теплоносителем, с тепловыми трубами для использования теплоты вентиляционных выбросов;
- Рекуперативные и регенеративные воздухоподогреватели.
Использование НТП вторичных энергоресурсов перспективно в абсорбционно-холодильных установках для производства холода (+5- +70С) и в теплонаносных установках для выработки тепловой энергии (порядка 80 0С).
В производстве стекловолокна за счет утилизации теплоты, теряемой через кладку бассейна, на печи производительностью 14-18 т/сутки экономится около 8 тыс. т насыщенного пара в год и около 800 тыс. кВт-час электроэнергии. Программа изготовления и внедрения систем испарительного охлаждения на других производствах может обеспечить выработку теплоты в количестве до 850 тыс. ГДж в год.
Утилизация теплоты отходящих газов распылительной сушилки белой сажи для нагрева воды оценивается величиной 54 тыс. ГДж/год.
Использование ВЭР в химической технологии таит в себе огромнейшие резервы экономии различных видов энергии.
Оглавление
- 1.Введение 3- Постановка задачи
- Описание технологической схемы
- Технологический расчёт
- Подготовка исходных данных по топливному газу и водяному пару
- Расчет процесса горения в печи
- Тепловой баланс печи, определение КПД печи и расхода топлива
- Гидравлический расчет змеевика печи
- Тепловой баланс котла-утилизатора анализ процесса парообразования
- Тепловой баланс воздухоподогревателя
- Тепловой баланс скруббера КТАНа
- Расчет энергетического КПД тепло-утилизационной установки
- Расчет эксергетического КПД процесса горения
- 10. Заключение 22
Заключение
Поскольку КПД тепло-утилизационной установки составляет 92%, то есть всего 8% тепла теряется в ходе процесса утилизации, можно сделать вывод о целесообразности использования подобных установок в целях экономии. Внедрение в основную технологическую схему аппаратов подобного действия благотворно сказывается на расходовании энергетических ресурсов и блокирует их потерю.или зарегистрироваться
в сервисе
удобным
способом
вы получите ссылку
на скачивание
к нам за прошлый год